
Adventures with
free Mathematical

Software
Edition 3

Adventures with
free Mathematical

Software
by

Justin R. Smith

Dedicated to the mem-
ory of my wonderful
wife, Brigitte.

©2023. Justin R. Smith. All rights reserved.

ISBN: 9798873341108

Also published by Five Dimensions Press
� Introduction to Algebraic Geometry (paperback and hardcover),

Justin Smith.
� Abstract Algebra (paperback and hardcover), Justin Smith.
� Eye of a Fly (Kindle edition and paperback), Justin Smith.
� The God Virus, (Kindle edition and paperback) by Justin Smith.
� Ohana, (Kindle edition and paperback) by Justin Smith.
� The Accidental Empress, (Kindle edition and paperback) by Justin

Smith.
� Die zufällige Kaiserin, German translation of The Accidental Empress

(Kindle edition and paperback) by Justin Smith.

Five Dimensions Press page:
http://www.five-dimensions.org

Email:jsmith@drexel.edu

Foreword

“The number system is like human life. First you have the natural
numbers. The ones that are whole and positive. Like the num-
bers of a small child. But human consciousness expands. The
child discovers longing. Do you know the mathematical expres-
sion for longing? The negative numbers. The formalization of the
feeling that you’re missing something. Then the child discovers
the in-between spaces, between stones, between people, between
numbers and that produces fractions, but it’s like a kind of mad-
ness, because it does not even stop there, it never stops. . . Math-
ematics is a vast open landscape. You head towards the horizon
and it’s always receding. . . ”
— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of Snow,
by Peter Høeg (see [21]).

This book arose out of one of the more enjoyable undergraduate
courses I taught at Drexel University: Mathematical Software. I taught
it for many years without using a textbook (and probably never taught
the same exact course twice!). I toyed with writing a text for it but never
found the time.

The courses I taught are varying subsets of the material in this manu-
script.

At Drexel, we used commercial software that had a very slick user-
interface (and that gives incorrect results in an important case!). In this
book, I use the free and open-source Maxima system with its wxMaxima
interface.
� Sections marked in this manner are more advanced or specialized and may

be skipped on a first reading.

� �

Sections marked in this manner are even more advanced or specialized
and may be skipped on a first reading (or skipped entirely).

I am grateful to the many editors of Wikipedia. The biographical
sketches in this book owe a great deal to their vital work.

I am also grateful to Matthias Ettrich and the many other developers
of the software, LYX — a free front end to LATEX that has the ease of use of
a word processor, with spell-checking, an excellent equation editor, and a
thesaurus. I have used this software for years and the current version is
more polished and bug-free than most commercial software.

Contents

Foreword vii

List of Figures xiii

Chapter 1. Introduction 1
1.1. Installation and first steps 1

Chapter 2. Number theory 9
2.1. Introduction 9
2.2. Euler’s totient function 14
2.3. Public-key cryptography 15
2.4. Diffie-Hellman-Merkle key exchange 19
2.5. Continued fractions 21

Chapter 3. Basic algebra and calculus 25
3.1. Functions and programming 28
3.2. Limits 36
3.3. Elimination theory 37

Chapter 4. Differential Equations 41
4.1. Introduction 41
4.2. Into the wild 50
4.3. The Heat Equation 52
4.4. Solution to the Heat Equation 59
4.5. Finer points of plotting 61
4.6. The Wave Equation 65

Chapter 5. Integral transforms 75
5.1. The Fourier Transform 75
5.2. The discrete Fourier transform 77
5.3. The Laplace Transform 80

Chapter 6. Orthogonal polynomials 87
6.1. Introduction 87
6.2. Weighted orthogonality 91

Chapter 7. Linear Algebra 99
7.1. Introduction 99
7.2. Changes of basis 107
7.3. Dot-products and projections 109
7.4. Eigenvalues and the characteristic polynomial 116

ix

x CONTENTS

7.5. Functions of matrices 129
7.6. Linear Programming 132

Chapter 8. Calculus of Finite Differences 143
8.1. A discrete introduction to finite differences 143
8.2. Functional Programming and Macros 148

Chapter 9. Nonlinear algebra 153
9.1. Introduction 153
9.2. Ideals and systems of equations 153
9.3. Gröbner bases 157
9.4. Buchberger’s Algorithm 158
9.5. Consistency of algebraic equations 160

Chapter 10. Robot motion-planning 163
10.1. A simple robot-arm 163
10.2. A more complex robot-arm 166

Chapter 11. Differential Game Theory, a Drive-by 173
11.1. Dances with Limousines 173
11.2. Rock, Paper, Rocket 181

Chapter 12. Special Functions 189
12.1. The Gamma Function 189
12.2. Elliptic integrals and elliptic functions 192
12.3. Bessel functions 198
12.4. Airy functions 201
12.5. Logarithmic and exponential integrals 202
12.6. Lambert functions 207

Chapter 13. The Zeta function 211
13.1. Properties of the ζ-function 211
13.2. A “formula” for prime numbers 218

Appendix A. Gröbner basis for the robotic motion problem 225

Appendix B. Predefined values. 231

Appendix C. Functional equation 233
C.1. Poisson summation 233
C.2. The main result 234

Appendix D. Fermat factorization 235
D.1. The algorithm 235
D.2. Derivation of the upper bound for the number of iterations 237

Appendix E. The Maxima Programming language 239
E.1. Introduction 239
E.2. Commands for functions and equations 239
E.3. Trigonometric functions 240
E.4. Logical Operations 240
E.5. Looping constructs 240

CONTENTS xi

E.6. Lists 241
E.7. Macros 245
E.8. Input and Output 247

Appendix F. Visual outputs 251
F.1. Plotting 251
F.2. plot3d 257
F.3. Standalone commands 261
F.4. Plot-outputs 261
F.5. The draw commands 262

Appendix. Solutions to Selected Exercises 271

Appendix. Index 287

Appendix. Bibliography 293

List of Figures

1.1.1 The complex plane 5

3.0.1 Roots of a cubic equation 26
3.1.1 Simple plot 29
3.1.2 Lambda plots 30
3.1.3 the block command 32
3.1.4 Local variables in a block-command 33
3.1.5 f(x) written using a block-command 33
3.1.6 False plot of f(x) 34
3.1.7 First plot of f(x) 35
3.1.8 Better plot of f(x) 35

4.1.1 Direction-field defined by equation 4.1.1 on page 41 42
4.1.2 The Logistic Curve 45
4.1.3 Output of the Runge-Kutta algorithm 48
4.1.4 Plot of two solutions 49
4.2.1 Plot of rabbits versus foxes 51
4.2.2 Rabbits and foxes 51
4.3.1 First three terms 56
4.3.2 First 10 terms 57
4.3.3 Comparison of first 10 with f(x) 57
4.3.4 The first 100 terms 57
4.3.5 Periodicity of a Fourier series 58
4.3.6 Gibbs Phenomena 59
4.4.1 ψ(x, .01) 61
4.4.2 ψ(x, .02) 61
4.4.3 ψ(x, .1) 62
4.4.4 ψ(x, 1) 62
4.5.1 An example of plot3d 63
4.5.2 with_slider_draw 63
4.5.3 Evolution of the heat equation 63
4.6.1 “Realistic” plucking function 68

xiii

xiv LIST OF FIGURES

4.6.2 The extended plucking function 68
4.6.3 Initial position of a two dimensional membrane 71
4.6.4 First three terms of a two-dimensional Fourier series 72
4.6.5 After .4 time units 73

5.1.1 Fourier transform of f (x) 77
5.3.1 Harmonic oscillator 82
5.3.2 Simple harmonic motion 83
5.3.3 Forced harmonic motion 84
5.3.4 Discontinuous driving force 86

6.1.1 Model for Legendre polynomials 88
6.1.2 The first six Legendre polynomials 89
6.1.3 First 5 terms of a Legendre series 90
6.1.4 First 20 terms of a Legendre series 91
6.2.1 The first four Chebyshev polynomials 92
6.2.2 First 20 terms of a Chebyshev expansion 93
6.2.3 Weight-function for Chebyshev expansions 94
6.2.4 Laguerre polynomials 94
6.2.5 Expansion of f(x) in 100 Laguerre polynomials 95
6.2.6 Hermite polynomials 97

7.1.1 Code for a reduced echelon matrix 105
7.3.1 Projection of a vector onto another 110
7.3.2 Least squares fit 113
7.3.3 Linear regression 114
7.3.4 “Formula” for prime numbers 116
7.4.1 A sample web 125
7.6.1 Feasible region 133
7.6.2 Linear programming solution 134

8.1.1 The harmonic numbers 147
8.2.1 The Gregory-Newton series 150
8.2.2 Polynomial giving the first 10 primes 151
8.2.3 Prime polynomial plot 152

10.1.1 A simple robot arm 163
10.1.2 Reaching a point 165
10.2.1 A more complicated robot arm 166

11.1.1 Turning radius=30 178
11.1.2 Turning radius=10 179

LIST OF FIGURES xv

11.1.3 Bond far away 179
11.1.4 Gimbel problem 180
11.1.5 Solution to the Gimbel Problem 180
11.2.1 Naive pursuit algorithm 184
11.2.2 Rock speed 30 185
11.2.3 Predictive algorithm with rock speed 30 187

12.1.1 The Γ-function 190
12.1.2 Plot of |Γ(z)| 191
12.2.1 Pendulum 193
12.2.2 Jacobi functions 196
12.2.3 Plot of sn(x, .9) 196
12.2.4 Plot of cn(x, .9) 197
12.3.1 First three Bessel J-functions 200
12.3.2 First three Bessel Y-functions 200
12.4.1 The Airy Functions 202
12.5.1 The li-function 203
12.5.2 The Ei-function 204
12.5.3 E1-function 205
12.5.4 The sine-integral 205
12.5.5 The cosine-integral 206
12.6.1 The Lambert W function 208
12.6.2 The Lambert function W−1(z) 208

13.1.1 The contour, C 212
13.2.1 Plot of R(x) 222
13.2.2 Approximate π(x) 223
13.2.3 First 100 primes (approximately) 224

F.1.1 High-level plot example 253
F.1.2 Mixed plot-types 254
F.1.3 Plot example 1 255
F.1.4 Plot example 2 255
F.1.5 Parametric plot 1 256
F.1.6 Code for mixed parametric plot 257
F.1.7 Mixed parametric plot 257
F.1.8 Contour plot 258
F.2.1 A 3d plot 258
F.2.2 A 3d plot with mesh 259
F.2.3 Plot with elevation 0 259

xvi LIST OF FIGURES

F.2.4 Plot using palette 259
F.2.5 Plot with a color palette 260
F.2.6 Plot with a color-bar 260
F.3.1 The Mandelbrot set 261
F.5.1 The with_slider_draw command 262
F.5.2 Basic draw-command 263
F.5.3 Two-column plot 265
F.5.4 Drawing two plots in one command 265
F.5.5 Drawings with two columns 265
F.5.6 Multiple functions in the same scene 267
F.5.7 The trefoil knot 268

F.5.8 Output of exercise plot 273
F.5.9 Plot of ellipse,same_xy 282
F.5.10 Plot without same_xy 283

Adventures with
Mathematical

Software

CHAPTER 1

Introduction

“In the broad light of day, mathematicians check their equations
and their proofs, leaving no stone unturned in their search for
rigour. But at night, under the full moon, they dream, they float
among the stars and wonder at the miracle of the heavens. They
are inspired.

Without dreams there is no art, no mathematics, no life.”
— Sir Michael Atiyah, Notices of the AMS, January 2010, page 8.

1.1. Installation and first steps

Mathematical software development has made great strides in recent
decades, and one of the most powerful systems is free and open-source.
It is a modernized form of the Macsyma system developed from 1968 to
1982 at MIT’s Project MAC. The original system remained available to aca-
demics and US government agencies, and was distributed by the US De-
partment of Energy (DOE). That version, DOE Macsyma, was maintained
by Bill Schelter, a professor of mathematics at the University of Texas at
Austin.

Under the name of Maxima, it was released under the GPL in 1999, and
remains under active maintenance.

Versions of it exist for Linux, Windows, and the MacOS, and FreeBSD
(see the web site https://maxima.sourceforge.io/. For other sys-
tems, you can download the source code and try to compile it.

The original Maxima had a command-line interface. Professor Schelter
developed a rudimentary GUI interface. This was further improved by
the wxMaxima project and now includes menus for many of the maxima
commands and the ability to save one’s work in a kind of notebook.

Your first assignment is to download wxMaxima and install this on
the system of your choice (Maxima is bundled with most distributions of
wxMaxima).

(1) In windows, you can download a version of it from
http://wxmaxima-developers.github.io/wxmaxima/.

(2) In Linux and the three BSD’s1, pre-packaged versions of wxMax-
ima are available that you can install if you have root access. After
it is installed, you can run it from your applications menu or in
any directory by typing

wxmaxima

1FreeBSD, NetBSD, and OpenBSD.

1

2 1. INTRODUCTION

(3) If you don’t have root access or your distribution doesn’t sup-
port it, you can download the “Applimage” version of wxMaxima
from the web site listed above and install it in your user account
by following the instructions. This image contains Maxima and
all other dependencies.

After starting up wxMaxima, you will notice a number of menus:

File: this is self-explanatory. It allows you to save notebooks and open
ones you have saved.

Edit: also self-explanatory. The copy menu-items are significant. Copy-as-
text copies a formula in a format that can be input to Maxima.
Copy-as-LaTex copies it in a format suitable for inclusion in a TeX
typesetting document. Copy-as-mathml copies it in a format suit-
able for web pages. Copy-as-image is suitable for pasting into a
word document or web pages that can’t be viewed by a mathml-
aware web browser.

View: this controls which palettes and menus you see. Play with it to see
what it does!

Cell: this is important! Maxima statements are called cells, and this exe-
cutes them (as well as manipulating them in other ways).

Maxima: this interacts with the Maxima program in various ways.
Equations: this contains Maxima commands to solve equations or differ-

ential equations.
Matrix: a menu containing commands for creating and manipulating ma-

trices.
Calculus: a menu containing commands to differentiate and integrate

functions, among other things.
Simplify: an important menu containing commands to simplify or expand

expressions and manipulate complex numbers.
List: commands to manipulate lists.
Plot: commands to create plots.
Numeric: contains commands related to numeric computations.
Help: self-explanatory.
%: this is not a menu item, but is very important nevertheless. This symbol

represents the value of the last computation Maxima performed.
Most menu commands act on this by default (although you can
override this easily).

Go to the menu marked ‘New’ in the upper right portion of the screen and
select a new Maxima session (there are several other options available).
Type 1+1 and click Cell▷Evaluate Cell(s) to get ‘2’. Amazing! This soft-
ware can add 1 and 1. We can also operate with numbers using ‘*’ for
multiplication, ‘/’ for division, and ‘^’ for raising to a power.

See table 1.1.1 on the next page, so the expression 1/2*a^2−3=0 has
implied parentheses ((1/2)*(a^2))−3=0. Operations at the same priority are
evaluated from left to right, so 3/4/5=3/(4*5)=3/20.

At this point, it is a good idea to save your notebook and give it a name
other than ‘Untitled’. Go to the ‘File’ menu and select ‘Save As’.

1.1. INSTALLATION AND FIRST STEPS 3

Operator
^ Exponentiation

/,*,. Division, multiplication, matrix-multiplication
+, - Addition, subtraction

: Assignment
=,#,<,>,<=,>= Equal, not equal, greater than, less than, greater or equal

not boolean not
and boolean and
or boolean or

TABLE 1.1.1. Hierarchy of operations

Maxima can factor numbers: type factor(121) and click
Cell▷Evaluate Cell(s) to get 112. For something more challenging, try

factor(123456789) to get 32 3607 3803.
Maxima saves fractions in their lowest form. If you type 128/256,

Maxima will come back with 1/2.
Maxima had the basic abs-function built in that computes absolute

value:

abs(2) = 2

abs(−2) = 2

In general, Maxima has examples of its commands built into it. The
general format of the example-command is

example (command)

For instance, try typing and click example(factor) and click
Cell▷Evaluate Cell(s) .

This may be used in other commands to refer to that output. For in-
stance, suppose you type 2^100 and click Cell▷Evaluate Cell(s) to get

1267650600228229401496703205376

Now you can type factor(%) and click Cell▷Evaluate Cell(s) to get 2100.
To get an idea of the raw computing power of Maxima, consider the

factorial function. Recall that factorials are defined by

n! = n × (n − 1)× (n − 2)× · · · × 1

The Maxima command for computing this is n! or factorial (n). Try
typing 100! or 1000! and clicking on Cell▷Evaluate Cell(s) .

Factorials like n! represent the number of ways of arranging n distinct
objects: Given n slots, the first object can go into any one of them. After it
has been placed, there are n − 1 slots left for the second object, and n − 2
for the third, and so on.

4 1. INTRODUCTION

Maxima also has a binomial-command given by

binomial(n, m) =
n!

m!(n − m)!

It also has a mathematical significance: it represents the number of
ways of selecting a set of m objects from a set of n distinct objects. The
numerator is all possible arrangements of the original n objects. Since we
don’t care what order the m objects we’ve selected are in (because this is a
set of m objects), we divide out by the ways of arranging these m objects.
Since we really don’t care what order the n − m objects we didn’t select are
in, we also divide out by (n-m)!.

The float-command gives the numeric value of a quantity in scientific
notation.

The word float is part of computing history. Early computers could only
work with integers. When computers were built that could handle num-
bers in scientific notation, the numbers were called floating-point because
the decimal point could “float” into any position. In Maxima, float numbers
use the computer’s intrinsic ability to do floating-point arithmetic. Maxima
also has a bfloat-command with floating point arithmetic implemented in
software. These numbers could potentially have thousands of significant
digits. A bfloat-number followed by bnn means the number is to be multi-
plied by 10nn.

If you type 123456789/987654321 and click Cell▷Evaluate Cell(s) ,
you get the fraction in its lowest terms: 13717421/109739369. If you type
bfloat(123456789/987654321) and click Cell▷Evaluate Cell(s) , you get
0.124999998860938.

The Numeric menu has a Bigfloat-precision option that specifies the
number of digits to use. If you set this to 100, typing bfloat(%pi) and se-
lecting Cell▷Evaluate Cell(s) gives

3.14159265358979323846264338327950288419716939937510
5820974944592307816406286208998628034825342117068

Maxima has predefined mathematical constants such as e and π:
typing bfloat(%e) and selecting Cell▷Evaluate Cell(s) produces
2.71828182845905: see Appendix B on page 231 for a list of them —
including inf for infinity2.

2Try typing bfloat (inf) and Cell▷Evaluate Cell(s) !

1.1. INSTALLATION AND FIRST STEPS 5

ℜ{z}

ℑ{z}

−2

−2

−1

−1

1

1

2

2

z = |z|eiθ

u
u = eiθ

θ

FIGURE 1.1.1. The complex plane

Identifiers in maxima are strings of: lower- and upper-case letters, digits,
and ’_’. They must not begin with a digit. Examples: ‘set1’, ’total_series’,
’accum’. They are case-sensitive and must not equal any Maxima keyword:

integrate next from diff
in at limit sum
for and elseif then
else do or if

unless product while thru
step block return derivative

In Maxima, %i represents
√
−1 and we can compute with complex

numbers. Recall that complex numbers can be either in a rectangular form
like a+ bi or a polar form like reiθ— see figure 1.1.1. Maxima has commands
to convert numbers between these forms: the rectform-command or
menu-item Simplify▷Complex Simplification▷Convert to Rectform or
the polform-command or menu-item
Simplify▷Complex Simplification▷Convert to Polarform . Typing

(2+3*%i)/(4+5*%i) and clicking Cell▷Evaluate Cell(s) causes
Maxima to come back with 3%i+2

5%i+4 . Typing the rectform-command or

menu-item Simplify▷Complex Simplification▷Convert to Rectform

gives 2%i
41 + 23

41 . Typing the polarform-command or menu-item
Simplify▷Complex Simplification▷Convert to Polarform gives

√
13%e%i arctan(2

23)
√

41

6 1. INTRODUCTION

Typing %e^(%pi*%i) and clicking Cell▷Evaluate Cell(s) results in −1,
reproducing Euler’s famous formula

eπi = −1

and typing %e^(x*%i) and the rectform-command or menu-item
Simplify▷Complex Simplification▷Convert to Rectform gives De

Moivre’s famous formula

(1.1.1) %i sin (x) + cos (x)

As you might expect, Maxima has basic functions like realpart and
imagpart that extracts these aspects of complex numbers

realpart(a + b ∗ %i) = a

imagpart(a + b ∗ %i) = b

Unfortunately, the abs-function doesn’t quite know how to handle complex
numbers:

abs(a + b ∗ %i) = |a + b ∗ %i|
For this purpose, we need the closely-related cabs-function (“complex” ab-
solute value)

cabs(a + b ∗ %i) =
√

b2 + a2

Leonhard Euler (1707 – 1783) was, perhaps, the greatest mathematician of
all time. Although he was born in Switzerland, he spent most of his life
in St. Petersburg, Russia and Berlin, Germany. He originated the notation
f (x) for a function and made contributions to mechanics, fluid dynamics,
optics, astronomy, and music theory. His final work, “Treatise on the Con-
struction and Steering of Ships,” is a classic whose ideas on shipbuilding
are still used to this day.

To do justice to Euler’s life would require a book considerably longer
than the current one — see the article [16]. His collected works fill more
than 70 volumes and, after his death, he left enough manuscripts behind
to provide publications to the Journal of the Imperial Academy of Sciences
(of Russia) for 47 years.

Typing %e^(%pi*%i/3) and clicking Cell▷Evaluate Cell(s) gives

a cube root of −1, i.e.,
√

3 i
2 + 1

2 . We can verify this claim by typing
(1/2*%i*sqrt(3) + 1/2)^3. Unfortunately, Maxima just comes back with(√

3 i
2 + 1

2

)3
.

What are we to do? Maxima has a command expand() that
causes it to eliminate parentheses as much as possible and multiply
factors out. Typing expand((1/2*%i*sqrt(3) + 1/2)^3) or clicking
Simplify▷Expand Expression results in −1.

1.1. INSTALLATION AND FIRST STEPS 7

EXERCISES.

1. From a standard 52-card deck of playing cards, how many 5-card
Poker hands are possible?

2. Write in the form a + bi
2

3 + i
3. Write in the form a + bi

3i +
1

1 − i
4. Find equations for sin nθ and cos nθ in terms of sin θ and cos θ. Hint:

use de Moivre’s Formula (1.1.1 on the facing page) and the binomial theo-
rem.

CHAPTER 2

Number theory

“Mathematics is the queen of sciences and number theory is the
queen of mathematics. She often condescends to render service
to astronomy and other natural sciences, but in all relations she
is entitled to the first rank.”
— Carl Friedrich Gauss, see [47].

2.1. Introduction

People not interested in number theory can skip this chapter; none of
the others depend on it.

Number theory is the study of integers. On the surface this makes it
seem almost laughably simple, but some of the most difficult and complex
problems in all of mathematics belong to number theory. For instance, Fer-
mat’s Last Theorem (stated in 1637):

The equation
an + bb = cn

has no solutions in integers with a, b, c > 0 and n > 2.
was only proved in 1995 by Andrew Wiles.

Pierre de Fermat (1607– 1665) was a French mathematician who is given
credit for early developments that led to infinitesimal calculus, including
his technique of adequalitya. He is recognized for his discovery of an orig-
inal method of finding the greatest and the smallest ordinates of curved
lines, which is analogous to that of differential calculus, and his research
into number theory. He made notable contributions to analytic geometry,
probability, and optics. He is best known for his Fermat’s principle for light
propagation and his Fermat’s Last Theorem in number theory, which he de-
scribed in a note at the margin of a copy of Diophantus’s Arithmetica.

aFor finding maxima and minima of functions.

The famous Riemann Hypothesis (discussed in chapter 13 on page 211)
is still unsolved.

Applied mathematicians regarded number theory as a subject only of
theoretical interest1. This state of affairs changed in the 1960’s when power-
ful new systems of cryptography were discovered that use number theory.
Today, the National Security Agency (responsible for secure communica-
tions) employs more number theorists than any university.

1As a grad student at the Courant Institute, the author mentioned number theory and
another student sneered “Does such a thing even exist?”

9

10 2. NUMBER THEORY

We will begin by reviewing some very basic material.
Most people learned the following result in grade school — long division

with a quotient and remainder:

PROPOSITION 2.1.1. Let n and d be real numbers. Then it is possible to write

n = q · d + r

where q is an integer and 0 ≤ r < d. If r = 0, we say that d
∣∣ n — stated “d

divides n”. The negation of this is d ∤ n (d doesn’t divide n).

Maxima can compute this with the mod-command: type
mod(987654321,123456789); and Cell▷Evaluate Cell(s) to get the
remainder of dividing 987654321 by 123456789, namely 9.

Although this definition usually requires n and d to be integers, the
Maxima command works for real numbers as well: mod(1.5,1); produces .5.
Essentially,

(2.1.1) mod(a, b) = a −
⌊ a

b

⌋
· b

The division algorithm gives rise to the concept of greatest common divi-
sor.

DEFINITION 2.1.2. Let n and m be positive integers. The greatest com-
mon divisor of n and m, denoted gcd(n, m), is the largest integer d such that
d
∣∣ n and d

∣∣m. The least common multiple of n and m, denoted lcm(n, m), is
the smallest positive integer k such that n

∣∣ k and m
∣∣ k.

Since 0 is divisible by any integer, gcd(n, 0) = gcd(0, n) = n.

There is a very fast algorithm for computing the greatest common di-
visor due to Euclid — see [12, 13].

REMARK. Euclid’s original formulation was geometric, involving line-
segments. Given two line-segments of lengths r1 and r2, it found a real
number r such that

r1

r
,

r2

r
∈ Z

An ancient proof of the irrationality of
√

2 showed that this process
never terminates if one of the line-segments is of unit length and the other
is the diagonal of a unit square.

As trivial as proposition 2.1.1 appears to be, it allows us to prove Bé-
zout’s Identity:

LEMMA 2.1.3. Let n and m be positive integers. Then there exist integers u
and v such that

(2.1.2) gcd(n, m) = u · n + v · m

REMARK. Bézout proved this identity for polynomials — see [2]. How-
ever, this statement for integers can be found in the earlier work of Claude
Gaspard Bachet de Méziriac (1581–1638) — see [22].

2.1. INTRODUCTION 11

After loading via load("gcdex"), the Maxima function igcdex(n, k) com-
putes the greatest common divisor and the values of u, v that appear in
equation 2.1.2 on the preceding page.

For example

load (" gcdex ") ;
igcdex (12345 ,98765432)

returns
[−39546175 , 4943 , 1]

where gcd(12345, 98765432) = 1 and

−39546175 · 12345 + 4943 · 98765432 = 1

Étienne Bézout (1730–1783) was a French algebraist and geometer credited
with the invention of the determinant (in [4]).

DEFINITION 2.1.4. A prime number is an integer that is not divisible by
any integer other than 1 or (±)itself.

The Maxima commands regarding primes are:
� primep(n) returns true when n is a prime and false otherwise. The

parameter primep_number_of_tests determines how many types
of tests for primality will be performed. The default is 25.

� primes(n, m) — returns a list of all primes, p, such that n ≤ p ≤ m.
For instance

primes (2 , 2 0)

returns
[2 , 3 , 5 , 7 , 11 , 13 , 17 , 19]

� prev_prime (n) — returns the largest prime < n.
� next_prime (n) — returns the smallest prime > n.

It is well-known that integers can be factored into powers of primes in a
unique way (see [40, chapter 3]:

LEMMA 2.1.5. Let n be a positive integer and let

n = pα1
1 · · · · · pαk

k

= qβ1
1 · · · · · qβℓ

ℓ(2.1.3)

be factorizations into powers of distinct primes. Then k = ℓ and there is a reorder-
ing of indices f : {1, . . . , k} → {1, . . . , k} such that qi = p f (i) and βi = α f (i) for
all i from 1 to k.

The Maxima function ifactors(n) determines the unique factorization
of n:

i f a c t o r s (1 2 3 4 5 6 7 8 9) ;

12 2. NUMBER THEORY

returns
[[3, 2] , [3607, 1] , [3803, 1]]

showing that
123456789 = 32 · 3607 · 3803

In this case, the factor-command also works.
Unique factorization also leads to many other results:

PROPOSITION 2.1.6. Let n and m be positive integers with factorizations

n = pα1
1 · · · pαk

k

m = pβ1
1 · · · pβk

k

Then n|m if and only if αi ≤ βi for i = 1, . . . , k and

gcd(n, m) = pmin(α1,β1)
1 · · · pmin(αk ,βk)

k

lcm(n, m) = pmax(α1,β1)
1 · · · pmax(αk ,βk)

k

Consequently

(2.1.4) lcm(n, m) =
nm

gcd(n, m)

DEFINITION 2.1.7. If n > 0 is an integer, two integers r and s are con-
gruent modulo n, written

r ≡ s (mod n)
if

n
∣∣ (r − s)

REMARK. It is also common to say that r and s are equal modulo n.
The first systematic study of these type of equations was made by Gauss
in his Disquistiones Arithmeticae ([15]). Gauss wanted to find solutions to
equations like

anxn + · · ·+ a1x + a0 ≡ 0 (mod p)

In Maxima terms, r ≡ s (mod n) if and only if mod(r, n)=mod(s, n).

PROPOSITION 2.1.8. Equality modulo n respects addition and multiplica-
tion, i.e. if r, s, u, v ∈ Z and n ∈ Z with n > 0, and

r ≡ s (mod n)

u ≡ v (mod n)(2.1.5)

then

r + u ≡ s + v (mod n)

r · u ≡ s · v (mod n)(2.1.6)

This elementary result has some immediate implications:

EXAMPLE. Show that 5|(7k − 2k) for all k ≥ 1. First note, that 7 ≡ 2
(mod 5). Equation 2.1.6, applied inductively, implies that 7k ≡ 2k (mod 5)
for all k > 1.

2.1. INTRODUCTION 13

DEFINITION 2.1.9. If n is a positive integer, the set of equivalence
classes of integers modulo n is denoted Zn.

REMARK. It is not hard to see that the size of Zn is n and the equiva-
lence classes are represented by integers

{0, 1, 2, . . . , n − 1}
Proposition 2.1.8 on the preceding page implies that addition and mul-

tiplication is well-defined in Zn. The Maxima command zn_add_table(n)
returns a table of Zn with the addition-operation. For instance:

zn_add_table (8) ;

returns table 2.1.1. 

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6


TABLE 2.1.1. Addition table for Z8

It is interesting to speculate on when a number has a multiplicative
inverse modulo n. It turns out that:

PROPOSITION 2.1.10. If n > 1 is an integer and x ∈ Zn, then there exists
y ∈ Zn with

x · y ≡ 1 (mod n)
if and only if gcd(x, n) = 1. When this is true, we say that x is relatively prime
to n.

Because of this, we are generally only interested in the elements x ∈ Zn
that are relatively prime to n. The set of such numbers is denoted Z×

n , where
the superscript × indicates that we’re considering the elements of Zn under
multiplication rather than addition. Maxima has a command for computing
the multiplication table for Z×

n : zn_mult_table(n). For instance

zn_mult_table (8) ;

produces the table in 2.1.2 on the next page.
We also have other commands for doing modular arithmetic:
� power_mod(a, n, m) — computes an (mod m). Note: there are al-

gorithms for computing powers modulo another number that are
much faster than simply raising the number to that power.

� inv_mod(n, m) — computes n−1 (mod m), if it exists (i.e., if
gcd(n, m) = 1), and false otherwise.

This section would not be complete without mention of the famous:

14 2. NUMBER THEORY


1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1


TABLE 2.1.2. Multiplication table for Z×

8

THEOREM 2.1.11 (Chinese Remainder Theorem). If n1, . . . , nk are a set of
positive integers with gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k, then the equations

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

have a unique solution modulo ∏k
i=1 ni.

REMARK. The Chinese Remainder Theorem was first published some-
time between the 3rd and 5th centuries by the Chinese mathematician Sun
Tzu (not to be confused with the author of “The Art of Warfare”).

Naturally, Maxima has a command that implements this: In the no-
tation of theorem 2.1.11, the command chinese([a1, . . . , ak], [n1, . . . , nk]) re-
turns x. If any of the conditions of theorem 2.1.11 are not met, it returns
false.

EXERCISES.

1. If n and m are two integers with gcd(n, m) = 1, what can you say
about the primes that appear in their factorizations?

2. If n and m are two integers with gcd(n, m) = 1, show that Z×
n·m =

Z×
n × Z×

m(the right side of this consists of pairs (a, b), where a ∈ Z×
n and

b ∈ Z×
m). Hint: use the Chinese Remainder Theorem.

2.2. Euler’s totient function

DEFINITION 2.2.1. If n is a positive integer then

ϕ(n)

is the number of generators of Zn — or the number of elements in Z×
n , or

� If n > 1 it is the number of integers, d, with 1 ≤ d < n with
gcd(d, n) = 1.

� If n = 1, it is equal to 1.

2.3. PUBLIC-KEY CRYPTOGRAPHY 15

This is called the Euler ϕ-function. Euler also called it the totient. The
Maxima command for computing this is called totient(n).

REMARK. If p is a prime number, then ϕ(p) = p − 1 since the integers
1 ≤ i ≤ p − 1 are all relatively prime to p.

Exercise 2 on the facing page shows that, if n and m are integers with
gcd(n, m) = 1, then

(2.2.1) ϕ(mn) = ϕ(n)ϕ(m)

This ϕ-function has some interesting applications

PROPOSITION 2.2.2. If n and m are integers > 1 with gcd(n, m) = 1, then

(2.2.2) mϕ(n) ≡ 1 (mod n)

It follows that, for any integers a and b

(2.2.3) ma ≡ mb (mod n)

whenever
a ≡ b (mod ϕ(n))

REMARK. Fermat proved this for n a prime number — in that case, it
is called Fermat’s Little Theorem.

EXERCISES.

1. Why is 7999 ≡ 7−1 (mod 100)?

2.3. Public-key cryptography

“Well, a regular code is like a strongbox with a key. You lock your
message in it and nobody can read it without the key.”

“I understand. But Ed needs the key to read the messages,
right? How do you get it to him without the bad guys also seeing
it?”

“That’s the beauty of this system. It’s like a magic box that
comes with two different keys. When you lock it with one key,
only the other key can open it.”

“You can’t use the original one?” she said.
“No,” I replied. “So, I send Ed one key and keep the other

for myself. Even if the bad guys get his key, they can’t use it to
decode my messages. Only the one I keep will do that.”

— Constance Fairchild, in the novel Bloodline (with the au-
thor’s permission). See [41].

The idea of a public-private key cryptosystem is attributed to Whitfield
Diffie and Martin Hellman, who published the concept in 1976.

16 2. NUMBER THEORY

Bailey Whitfield ‘Whit’ Diffie (1944–) An American cryptographer and
mathematician and one of the pioneers of public-key cryptography along
with Martin Hellman and Ralph Merkle. Diffie and Hellman’s 1976 pa-
per, [11], introduced a radically new method of distributing cryptographic
keys, that helped solve key distribution — a fundamental problem in cryp-
tography. They lacked a good implementation of their ideas.

Martin Edward Hellman (1945–) is an American cryptographer and mathe-
matician, best known for his involvement with public key cryptography in
cooperation with Whitfield Diffie and Ralph Merkle. Hellman is a longtime
contributor to the computer privacy debate, and has applied risk analysis
to a potential failure of nuclear deterrence.
Hellman was elected a member of the National Academy of Engineering in
2002 for contributions to the theory and practice of cryptography.

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman, described an
efficient algorithm for public key encryption based on proposition 2.2.2 on
the previous page. A description of the algorithm was published in August
1977, in Scientific American magazine’s Mathematical Games column2.

Clifford Cocks, an English mathematician working for the British intel-
ligence agency Government Communications Headquarters (GCHQ), de-
scribed an equivalent system in an internal document in 1973. His descrip-
tion was classified until the RSA algorithm appeared.

Ronald Linn Rivest (1945–) is a cryptographer and computer scientist
whose work has spanned the fields of algorithms and combinatorics, cryp-
tography, machine learning, and election integrity. He is an Institute Pro-
fessor at the Massachusetts Institute of Technology (MIT) and a member of
MIT’s Department of Electrical Engineering and Computer Science and its
Computer Science and Artificial Intelligence Laboratory.
Along with Adi Shamir and Len Adleman, Rivest is one of the inventors of
the RSA algorithm. He is also the inventor of the symmetric key encryp-
tion algorithms RC2, RC4, and RC5, and co-inventor of RC6. (RC stands
for "Rivest Cipher". He also devised the MD2, MD4, MD5 and MD6 cryp-
tographic hash functions.

Adi Shamir (1952–) is an Israeli cryptographer. He is a co-inventor of the
Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len
Adleman), a co-inventor of the Feige–Fiat–Shamir identification scheme
(along with Uriel Feige and Amos Fiat), one of the inventors of differential
cryptanalysis and has made numerous contributions to the fields of cryp-
tography and computer science

Leonard Adleman (1945–) is an American computer scientist. He is one
of the creators of the RSA encryption algorithm, for which he received the
2002 Turing Award. He is also known for the creation of the field of DNA
computing.

2To the consternation of the CIA!

2.3. PUBLIC-KEY CRYPTOGRAPHY 17

The basic idea:

Let p and q be two large (30 digits or more) primes, and let
n = pq so ϕ(n) = (p − 1)(q − 1). Now let a, b be integers
such that

ab ≡ 1 (mod ϕ(n))

If 1 ≤ x ≤ n is any number, then

(xa)b = xab ≡ x1 (mod n)

So, to encode x, raise it to the ath power modn. The
“encoded message” is (n, y), where y ≡ xa (mod n). To
“decode” the message, compute yb mod n, resulting in the
original a.

Make the value of n and a widely available. If anyone
wants to send you a message, they raise it to the ath power
modn and transmit it. When you receive it, you raise it to
the bth power modn and retrieve the original message.

How would a malicious person crack this code? They know a and n be-
cause these numbers were widely publicized. If they could compute ϕ(n)
it would be fairly easy3 to compute b ≡ a−1 (mod ϕ(n)). So the whole
problem of cracking this code boils down to computing ϕ(n), given n. It
turns out that there’s no known way of doing this without factoring n to get
p and q.

The conventional way to factor numbers involves trying primes like
2, 3, . . . , 17 and reducing the size of the number until it is manageable. Sup-
pose the smallest prime that divides a number has 30 digits! Factoring that
number will be quite difficult. Faster algorithms for factoring numbers
have been discovered4, but they are not substantially faster in all cases.

This is called the RSA encryption algorithm after its developers’ sur-
names. Since converting a long message to numbers and raising them to
a high power is computationally expensive, the “messages” sent via this
algorithm are usually keys for other, more conventional ciphers — which is
why it’s called a key-distribution algorithm.

Its security depends on the difficulty of factoring certain
large numbers.

Nowadays, the RSA algorithm uses the Carmichael λ-function rather than
the ϕ-function:

DEFINITION 2.3.1. If n > 1 is an integer, the Carmichael function, λ(n),
is the smallest integer 1 ≤ k ≤ n such that

ak ≡ 1 (mod n)

for all a ∈ Z such that gcd(n, a) = 1.

3As it turns out!
4See appendix D on page 235.

18 2. NUMBER THEORY

If p and q are primes, it turns out that λ(p · q) = lcm(p − 1, q − 1) ≤
(p − 1)(q − 1), and computing this still requires factoring p · q. It’s used
these days simply because it is usually smaller than ϕ(p · q)5.

Naturally, Maxima has a command for computing λ(n):

zn_carmichael_lambda (n)

For instance

t o t i e n t (1 0 0)

returns 40, while

zn_carmichael_lambda (1 0 0)

returns 20.
We have the related command

zn_order (x , n)

which computes the lowest exponent t such that

xt ≡ 1 (mod n)

The computation uses a factorization of ϕ(n) (i.e. totient(n)). Since this
might be time-consuming (or practically impossible), the user can “help
the command” by supplying such a factorization6 as the second parameter
in the notation of ifactors.

So our cryptographic scheme involve the following steps:
(1) Choose two large prime numbers q < p. To make factoring harder,

p and q should be chosen at random, be both large and have a
large difference: If

1
2q

(
p − q

2

)2

is small, Fermat factorization can easily factor p · q — see appendix D
on page 235. For choosing the primes, the standard method is to
choose random integers and test for primality (using prime_p in
Maxima, for instance) until two primes are found. The primes p
and q are kept secret.

(2) Compute n = pq. This product, n, is used as the modulus for both
the public and private keys. Its length, usually expressed in bits,
is the key length.

(3) Compute λ(n) = lcm(p − 1, q − 1).
(4) Choose an integer e such that 2 < e < λ(n) and gcd(e, λ(n)) = 1. e

having a short bit-length and small Hamming weight (number of
1’s in its binary representation) results in more efficient encryption
— the most commonly chosen value for e is 216 + 1 = 65537. The
smallest (and fastest) possible value for e is 3, but such a small

5So the computations are slightly faster.
6Acquired by some magic, perhaps!

2.4. DIFFIE-HELLMAN-MERKLE KEY EXCHANGE 19

value for e has been shown to be less secure in some settings. The
public key is the pair (n,e). This is widely publicized.

(5) e is released as part of the public key. Determine d ≡ e−1

(mod λ(n)). The number, d, is kept secret as the private key
exponent. The private key is (n, d) — this is kept secret.

CLAIM. Everyone who has ever purchased something on the network
has used a public key cryptosystem. The web server (for instance, the ven-
dor selling things) generates a public and private key pair. Then it sends the
public key to the web browser, which replies with an encrypted message
containing a randomly generated key for a secure conventional cryptosys-
tem (the message also includes a code for the desired type of conventional
cryptosystem; most browsers and servers support many of them). The web
server decrypts that and all further communication between the web server
and the browser is encrypted via the conventional system using that key.

Another important application of public-key cryptosystems is in digital sig-
natures. This passage from Bloodline says it all:

. . . Then use your private key to lock your message in the box.
Although your message is locked away, anyone can read it

— using your public key to unlock it. That’s fine — this time,
your aim wasn’t to hide the message. The very fact that your pub-
lic key works proves you locked the message in the box: Only the
mate of the key that locked the magic box can unlock it. . .

— from the novel Bloodline (with the author’s permission).
See [41].

In real life, a kind of summary of the message (a MD5-hash, for instance)
is encrypted with the private key (not the whole message!) and sent along
with the original message.

2.4. Diffie-Hellman-Merkle key exchange

Ralph C. Merkle (1942–) is a computer scientist and mathematician. He
is one of the inventors of public-key cryptography, the inventor of crypto-
graphic hashing, and more recently a researcher and speaker on cryonics.
Merkle is a renowned cryptographer, known for devising Merkle’s Puzzles,
co-inventing the Merkle–Hellman knapsack cryptosystem, and inventing
cryptographic hashing (Merkle–Damgård construction) and Merkle trees.
He received the IEEE Richard W. Hamming Medal in 2010 and has pub-
lished works on molecular manipulation and self-replicating machines. He
also serves on the board of directors for the cryonics organization Alcor Life
Extension Foundation and appears in the science fiction novel The Diamond
Age.

This is a variation on the public-key cryptography described in the last
section, in that there is no private key. Let n > 1 be an integer and consider
the multiplicative set Z×

n . This has ϕ(n) elements and

DEFINITION 2.4.1. Given an integer, n, a primitive root modulo n, x ∈
Z×

n , is an element with the property that for any y ∈ Z×
n there exists an

integer m such that y = xm (mod n).

20 2. NUMBER THEORY

REMARK. Primitive roots exist if n = 2, 4, pk or 2pk with p a prime > 2
— see [15] or [46].

Maxima has a command for computing primitive elements if they exist:

zn_primroot (n)

or false if they don’t.
The parameter zn_primroot_limit determines how many attempts it

will make (the default is 1000). The computation uses a factorization of
ϕ(n) (i.e. totient(n)). Since this might be time-consuming (or practically
impossible), the user can “help the command” by supplying such a factor-
ization as the second parameter in the notation of ifactors:

zn_primroot (n , f a c t o r i z a t i o n)

Example

p:2^142 + 2 1 7 ;
i f s : i f a c t o r s (t o t i e n t (p)) ;
g : zn_primroot (p , i f s) ;

Our public key is the pair (n, x) where x is a primitive root modulo n; there
is no private key. When A and B wish to communicate, they both select
random numbers a and b modulo n.

A sends B the message xa (mod n), and B sends A the message xb

(mod n). When A receives this, he raises it to the ath power modulo n,
and B raises A’s message to the bth power modulo n.

As the end of this exchange, both A and B have a shared secret

xa·b (mod n)

that no one else knows. This secret can be used as a key for a more conven-
tional (agreed-upon) cryptosystem7 that is used for further communication.

Its security depends on computing a (mod n), given n, x, and
xa (mod n) — the so-called discrete logarithm problem: In a manner of
speaking a = logx xa, the logarithm of xa — or it would be if computations
were done over R rather than Z×

n .
There are no known efficient algorithms for solving this other than rais-

ing x to all possible powers and comparing the result with xa (mod n).
Since a might be a large number, this could be computationally expensive.

Compare this with the treatment of elliptic-curve cryptography in [42, sec-
tion 6.2.2].

After all this, it’s important to mention that Maxima has a discrete log-
arithm command

zn_log (a , g , n)

If g is a primitive root modulo n, this solves the congruence gx ≡ a
(mod n), if a solution exists.

7Which may also be publicly-known.

2.5. CONTINUED FRACTIONS 21

EXERCISES.

1. Modify the key-exchange algorithm to give a shared secret to m peo-
ple, where m > 2.

2. Implement electronic signatures using Diffie-Hellman-Merkle key ex-
change.

2.5. Continued fractions

Here’s an example of a continued fraction:

√
2 = 1 +

1
2 + 1

2+ 1
2+ 1

2+ 1
2+ 1

2+ 1
2+ 1

2+ 1
2+ 1

2+ 1
2 ···

Euler developed much of the theory of continued fractions, proving that

arctan(x) =
x

1 + 12x2

3−x2+ 32x2
5−3x2+···

for |x| ≤ 1, where the general term is

(2k − 1)2x2

2k + 1 − (2k − 1)x2 + · · ·

Setting x = 1 gives a nice continued fraction for π/4.
The standard form for continued fractions have numerators equal to 1,

and it can be proved that every continued fraction is equal to one in the
standard form (see [33]).

In Maxima, continued fractions are represented as lists
√

2 = [1, 2, 2, 2, 2, . . .]

The results of truncating a continued fraction at a point is called a convergent
of the fraction. In the case of algebraic numbers like

√
2, the terms repeat

indefinitely and Maxima usually simply lists the sequence that repeats, so
we get

cf (sqr t (2))
[1 , 2]

The cf-command attempts to find a continued fraction form of its parame-
ter. It can work with linear combinations of square roots of integers (which
all produce repeating continued fractions) and floating point numbers:

22 2. NUMBER THEORY

cf (%pi) ;
cf : %pi i s not a continued f r a c t i o n . / * e r r o r message ! * /

f : cf (f l o a t (%pi)) ;
[3 , 7 , 1 5 , 1 , 2 9 2 , 1 , 1 , 1 , 2 , 1 , 3 , 1 , 1 4]

The command cfdisrep displays a continued fraction in its normal mode

c f d i s r e p (f)

returns

3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

1+ 1
1+ 1

1+ 1
2+ 1

1+ 1
3+ 1

1+ 1
14

The reader might wonder why we’re interested in continued fractions
(aside from the intriguing display they form on a printed page!). The
answer is that their convergents (i.e. the results of truncating them after
some finite point on) are rational numbers that converge to a real number
faster than any other known representation — if the continued fraction is
in standard form.

For instance, the command

cf (sqr t (2))

returns

[1 , 2]

which is not the answer8! The square root of 2 is the infinite periodic con-
tinued fraction

[1 , 2 , 2 , 2 , 2 , 2 , 2 , , . . .]

where the first term is the only one that isn’t repeated. In mathematical
notation, the nonperiodic portion is usually distinguished via a semicolon:

[1 ; 2 , 2 , 2 , 2 , 2 , 2 , , . . .]

Maxima doesn’t do this, which might be confusing if one doesn’t know that√
2 is irrational from the outset.

The parameter cflength determines the number of periods of a periodic
continued fraction that will be displayed. The default is 1. The author
recommends setting this to something > 1 !

In theory, then, if we want to build a computer that works with real
numbers, we should store them as continued fractions. Unfortunately, per-
forming basic arithmetic with continued fractions is difficult.

8It is a rational number!

2.5. CONTINUED FRACTIONS 23

There’s a lengthy theory of continued fractions and how they can be
used to prove numbers are irrational or transcendental. Again, see [33].

CHAPTER 3

Basic algebra and calculus

“L’algèbre n’est qu’une géométrie écrite; la géométrie n’est
qu’une algèbre figurée.” (Algebra is merely geometry in words;
geometry is merely algebra in pictures)
— Sophie Germain, [18]

We can type z :(a+b)^5. Try typing expand(z) to eliminate the paren-
theses and multiply out a + b five times. The result is

b5 + 5ab4 + 10a2b3 + 10a3b2 + 5a4b + a5

Maxima can also factor algebraic expressions: type z:a^10+b^10 and
Cell▷Evaluate Cell(s) , then factor (z) and Cell▷Evaluate Cell(s) to get

(
a8 − a6b2 + a4b4 − a2b6 + b8

)(
a2 + b2

)
In the above, the letter z is an expression, and we can plug values in for

its variables. For instance, type z(a=1) and Cell▷Evaluate Cell(s) to get

(b^8 − b^6 + b^4 − b^2 + 1) * (b^2 + 1)

Maxima can solve equations with the solve command. Typing

solve (a * x^2+b * x+c =0 , x)

solves for x and reproduces the familiar quadratic formula[
x = −

√
b2 − 4ac + b

2a
, x =

√
b2 − 4ac − b

2a

]

If we type

solve (a * x^3+b * x^2+c * x+d=0 , x)

we get Tartaglia’s formula for the roots of a cubic equation in figure 3.0.1 on
the following page.

25

26 3. BASIC ALGEBRA AND CALCULUS

[
x =

(
−1
2

−
√

3 i
2

) 
√

27 a2 d2 +
(
4 b3 − 18 a b c

)
d + 4 a c3 − b2 c2

2 3
3
2 a2

+
b c
a a − 3 d

a
6

+
(−1) b3

27 a3


1
3

−

(√
3 i
2 + −1

2

) (
(−1) b2

9 a2 + c
3 a

)

√

27 a2 d2+
(

4 b3−18 a b c
)

d+4 a c3−b2 c2

2 3
3
2 a2

+
b c
a a −

3 d
a

6 +
(−1) b3

27 a3


1
3

+
(−1) b

3 a
,

x =

(√
3 i
2

+
−1
2

) 
√

27 a2 d2 +
(
4 b3 − 18 a b c

)
d + 4 a c3 − b2 c2

2 3
3
2 a2

+
b c
a a − 3 d

a
6

+
(−1) b3

27 a3


1
3

−

(
−1
2 −

√
3 i
2

) (
(−1) b2

9 a2 + c
3 a

)

√

27 a2 d2+
(

4 b3−18 a b c
)

d+4 a c3−b2 c2

2 3
3
2 a2

+
b c
a a −

3 d
a

6 +
(−1) b3

27 a3


1
3

+
(−1) b

3 a
,

x =


√

27 a2 d2 +
(
4 b3 − 18 a b c

)
d + 4 a c3 − b2 c2

2 3
3
2 a2

+
b c
a a − 3 d

a
6

+
(−1) b3

27 a3


1
3

−
(−1) b2

9 a2 + c
3 a

√
27 a2 d2+

(
4 b3−18 a b c

)
d+4 a c3−b2 c2

2 3
3
2 a2

+
b c
a a −

3 d
a

6 +
(−1) b3

27 a3


1
3

+
(−1) b

3 a

]

FIGURE 3.0.1. Roots of a cubic equation

Niccolò Fontana Tartaglia (1499/1500 – 1557) was a mathematician, archi-
tect, surveyor, and bookkeeper in the then-Republic of Venice (now part of
Italy). Tartaglia was the first to apply mathematics to computing the tra-
jectories of cannonballs, known as ballistics, in his Nova Scientia, “A New
Science.”

He outlined his formula for the roots of a cubic polynomial in a poem based
on Dante’s Inferno.

Tartaglia had a tragic life. As a child, he was one of the few survivors of
the massacre of the population of Brescia by French troops in the War of
the League of Cambrai. His wounds made speech difficult or impossible,
prompting the nickname Tartaglia (“stammerer”).

We can also do this for a fourth degree polynomial, resulting in a much
more complex formula. Something interesting happens if we go to the fifth
degree. Maxima gives back the same polynomial we input. This is because
no general formula exists for the roots of a polynomial of degree 5 or higher.
See [40, chapter 8] for a proof of this.

To some extent, we can find approximate roots of polynomials (and other
functions) numerically. Numeric methods have difficulty computing com-
plex roots, and can fail in many cases. The advantage of the formulas is that
they give exact answers (and they always work).

Suppose we have a polynomial x4 + 2x3 − 3x + 5. Since it’s fourth-
degree, a formula exists for computing its roots exactly. Note that the messy

3. BASIC ALGEBRA AND CALCULUS 27

equation in figure 3.0.1 on the preceding page is enclosed in square brack-
ets. This means it is a Maxima-list. We access members of a list via square
brackets and an integer, starting from 1. If we type

r o o t s : solve (x^4+2*x^3−3*x+5=0 ,x)

the 4 roots are roots[1], roots[2], roots[3], and roots[4].
Typing roots[1] and Cell▷Evaluate Cell(s) gives

x = −

√√√√√√√√√√
− 4

√
3√√√√√√√√√

3

 √
47597%i

23
3
2

+ 29
2

 2
3
+3

 √
47597%i

23
3
2

+ 29
2

 1
3
+26

 √
47597%i

23
3
2

+ 29
2

 1
3

−
(√

47597%i
23

3
2

+ 29
2

) 1
3

− 26

3
(√

47597%i

23
3
2

+ 29
2

) 1
3
+ 2

2

−

√√√√√√√ 3
(√

47597%i

23
3
2

+ 29
2

) 2
3
+3
(√

47597%i

23
3
2

+ 29
2

) 1
3
+26(√

47597%i

23
3
2

+ 29
2

) 1
3

2
√

3
− 1

2

If we apply the bfloat-command or menu-item Numeric▷To Bigfloat
to the expression, we get the same expression, with decimal
numbers instead of exact integers! This is a complex number,
so we can apply the rectform-command or menu-item
Simplify▷Complex Simplification▷Convert to Rectform to try to put it

into standard complex notation. This gives us

x = −1.603712691810368b0%i√
2

− 1.814527633159785b0√
2

− 5.0b − 1

Applying the bfloat-command or menu-item Numeric▷To Bigfloat to this
gives

(3.0.1) x = −1.133996119454043b0%i − 1.78306479405766b0

How do we check this? We use the subst-command or select
Simplify▷Substitute . The command’s format is

subst (new_value , o ld_var iab le , express ion)

and it gives

(−1.133996119454043b0%i − 1.78306479405766b0)4

+ 2.0b0(−1.133996119454043b0%i − 1.78306479405766b0)3

− 3.0b0 (−1.133996119454043b0%i − 1.78306479405766b0) + 5.0b0

28 3. BASIC ALGEBRA AND CALCULUS

which is not particularly enlightening. How do we get Maxima to multiply
out the parenthesized expressions? We use the expand-command or menu-
item Simplify▷Expand Expression to get

6.661338147750939b − 16%i + 4.662936703425657b − 15

which is very close to 0. This shows that equation 3.0.1 on the preceding
page defines an (approximate) root of x4 + 2x3 − 3x + 5.

The next root, roots[2], turns out to be its complex conjugate

x = 1.133996119454043b0%i − 1.78306479405766b0

roots[3] and roots[4] also turn out to be a complex conjugate pair.
If we try this with a fifth-degree polynomial

solve (x^5+2*x −5=0 ,x) ;

we get [
0 = x5 + 2x − 5

]
which simply says that the roots of this polynomial are the roots — i.e., Max-
ima cannot find exact roots. In this case, we can ask Maxima to use a nu-
meric algorithm via

a l l r o o t s (x^5+2*x − 5) ;

to get

(3.0.2)
x = 1.208917813386895, x = 0.9409544200647337%i− 1.167042002184507,

x = −0.9409544200647337%i − 1.167042002184507,
x = 1.234436184384532%i + 0.5625830954910601,

x = 0.5625830954910601 − 1.234436184384532%i

In some cases, numeric algorithms do not converge.

EXERCISES.

1. Suppose we only want a list of the roots of a polynomial rather than
a list of equations like x=root. Hint: use the rhs and map commands (look
them up in the index or appendix E on page 239).

3.1. Functions and programming

We have seen that identifiers like ’z’, ’a’, or ’b’ can represent variables
or expressions. They can also equal functions: type f (x):=x^2−3*x+3 and
Cell▷Evaluate Cell(s) to define the identifier f to be a function. Note that

3.1. FUNCTIONS AND PROGRAMMING 29

x
^
2
-3

*
x
+

3

x

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

FIGURE 3.1.1. Simple plot

:= is used to define a function. We can also define “anonymous” functions
using the lambda-command:

lambda ([x , y] , x * y)

Having defined a function, we can plot it with the command
plot2d(f ,[x ,0,3]) to get figure 3.1.1

Standard form of this command:

plot2d (func t ion / * o r l i s t * / [f1 , f2 , . . . , fn] ,
[x , low_x , high_x]
/ * o p t i o n a l : * / , [y , low_y , high_y]

)

The list of functions allows you to plot multiple functions in a single plot.
Note that text between /* and */ is regarded as a comment and is treated as
white space by Maxima.

We can plot lambda-functions in a command

plot2d ([lambda ([x] , x ^2) , lambda ([x] , x ^3) ,
lambda ([x] , x ^ 7)] , [x , 0 , 1])

to get figure 3.1.2 on the next page.
Now that we have functions, we can also do calculus. Maxima has a

derivative-command that does what its name implies. Its format is

d e r i v a t i v e (expression , v a r i a b l e) ;

An alternate way computing derivatives uses the diff-command

d i f f (expression , v a r i a b l e) ;

which also allows for multiple derivatives

d i f f (expression , var iab le , number) ;

So typing

30 3. BASIC ALGEBRA AND CALCULUS

x

lambda([x],x^2)
lambda([x],x^3)
lambda([x],x^7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

FIGURE 3.1.2. Lambda plots

d i f f (x ^2 , x , 2) ;

gives 2.
Typing derivative(x^x, x); gives

xx (log (x) + 1)

If the expression has several variables, this becomes the partial derivative
with respect to the variable listed1. For instance, derivative(x^(x*y), x);
and hitting Cell▷Evaluate Cell(s) gives

xxy (log (x)y + y)

and derivative(x^(x*y), y); and hitting Cell▷Evaluate Cell(s) gives

xxy+1 log (x)

Since we can compute derivatives, we can compute Taylor series, using
the taylor-command2

t a y l o r (funct ion , var iab le , center , highest_power) ;

So

t a y l o r (s i n (x) , x , 0 , 1 0) ;

gives

x − x3

6
+

x5

120
− x7

5040
+

x9

362880
+ . . .

There is the closely related powerseries-command that attempts to com-
pute a formula for the general coefficient. Its general form is

powerseries (funct ion , var iab le , c e n t e r) ;

For example

powerseries (s i n (x) , x , 0) ;
/* Note t h a t the number of terms i s not s p e c i f i e d */

1The listed variable is regarded as the only variable; all others are treated as constants.
2We’ll leave out the “hitting Cell▷Evaluate Cell(s) ” from now on; it’s implied.

3.1. FUNCTIONS AND PROGRAMMING 31

gives
∞

∑
i1=0

(−1)i1x2i1+1

(2i1 + 1) !

In cases where the powerseries-command “doesn’t know” a formula for
the general term (for example, sin(sin(x))), it repeats the input. The taylor-
command just computes derivatives and grinds out the taylor series to the
required precision:

t a y l o r (s i n (s i n (x)) , x , 0 , 1 0) ;

gives

x − x3

3
+

x5

10
− 8x7

315
+

13x9

2520
+ · · ·

Returning to f (x):=x^2−3*x+3, typing integrate(f (x), x) gives

x3

3
− 3x2

2
+ 3x

For definite integrals, we give the limits of integration:
integrate(f (x), x ,0,2); to get 8

3 . The general form of this command is

i n t e g r a t e (expression , v a r i a b l e)

with optional limits of integration. As with differentiation, the variable
listed in the command is regarded as the only variable; the others are treated
as constants. So

i n t e g r a t e (x * y * z , y)

results in
xy2z

2
The integrate () -command “knows” all the rules of integration taught

in a calculus course (or in a table of integrals at the back of a textbook). For
instance, if you type integrate(1/(1+x^5),x), Maxima comes back with

√
5
(√

5 + 1
)

arctan
(

4 x+
√

5−1√
2
√

5+10

)
5
√

2
√

5 + 10
+

√
5
(√

5 − 1
)

arctan
(

4 x−
√

5−1√
−2

√
5+10

)
5
√
−2

√
5 + 10

−

(√
5 + 3

)
log
(

2 x2 − x
(√

5 + 1
)
+ 2
)

10
(√

5 + 1
) −

(√
5 − 3

)
log
(

2 x2 + x
(√

5 − 1
)
+ 2
)

10
(√

5 − 1
)

+
1
5

log (x + 1)

This is clearly correct ,!
In some cases, Maxima will simply return one’s input. For instance,

typing integrate(x^x,x) gives ∫
xxdx

32 3. BASIC ALGEBRA AND CALCULUS

= equality
> left side greater than right
< right side greater than left

<= less than or equal
>= greater than or equal
not equal

TABLE 3.1.1. Maxima relational operators

which says “the integral is the integral”. This is Maxima’s way of saying it
doesn’t “know” how to get a more concrete formula for the integral of xx.

If we type integrate(x*log(x), x, a, b); , Maxima asks us whether 1 <
a and later, whether a < b. We can answer these questions beforehand via
the assume-command:

assume (x >1)
assume (b>a)

type this prior to doing the integration, and Maxima won’t ask questions.
Maxima has a complete programming language built into it for defin-

ing more complex functions. Suppose we want to define a function as fol-
lows:

(3.1.1) f (x) =


0 x < −1
1 −1 ≤ x < 0
x2 0 ≤ x ≤ 1
0 x > 1

To implement this function, we need if-statements and relational operators
— see table 3.1.1. We could implement it as a complex nested if-statement

f (x) : = i f (x<−1) then 0
e lse i f (x <0) then 1
e lse i f (x <=1) then x^2
e lse 0 ;

Maxima allows you to remove the space between else and if to form an
elseif-command that does the same thing.

Maxima has a block-statement that can make it easier to define com-
plex logical and other types of programs. Its general format given in fig-
ure 3.1.3.

block ([l o c a l _ v a r i a b l e s or empty l i s t] ,
statement1 ,
statement2 ,
. . . ,
value) ;

FIGURE 3.1.3. the block command

3.1. FUNCTIONS AND PROGRAMMING 33

x : 2 ;
block ([x : 0 , y , z] , / * a l o c a l v a r i a b l e named x * /

x : 3 ,
1) ;

/ * x i s s t i l l e q u a l t o 2 * /

FIGURE 3.1.4. Local variables in a block-command

f (x) := block ([] , / * no l o c a l v a r i a b l e s * /
i f (x<−1) then return (0) ,
i f (x <0) then return (1) ,
i f (x <=1) then return (x ^2) ,
0) ; / * d e f a u l t f i n a l v a l u e * /

FIGURE 3.1.5. f(x) written using a block-command

The value at the end is the result of the block-command executing. The
local variables are created inside the block and never conflict with variables
of the same name outside of it. Figure 3.1.4 illustrates this. The list of local
variables can also (optionally) assign initial values to them.

If there are no local variables, the block-command still requires an
empty list. Another way to exit a block is with the return-command. It
exits the block with whatever value (enclosed in parentheses) it has as its
parameter.

To summarize:
A block is the word block followed by a comma-separated sequence in

parentheses

(1) The first element is a list of local variables or an empty list.
(2) The remaining entries (before the last one) are expressions.
(3) The last entry is a (numeric or symbolic) value.
(4) block statements can be nested to any depth.

One exits the block by either

(1) dropping through the last entry, or
(2) a return statement

So our discontinuous function in equation 3.1.1 on the preceding page
could be coded as in figure 3.1.5.

Unfortunately, the derivative and integrate commands do not under-
stand the logic of these little programs and we have to use a bit of ingenuity
to compute them. For instance, to compute∫ ∞

−∞
f (x)dx

we have to rewrite it as

(3.1.2)
∫ ∞

−∞
f (x)dx =

∫ 0

−1
1dx +

∫ 1

0
x2dx =

4
3

34 3. BASIC ALGEBRA AND CALCULUS

0

x

-1

-0.5

 0

 0.5

 1

-4 -2 0 2 4

FIGURE 3.1.6. False plot of f(x)

Plotting functions defined by programs also presents some special con-
siderations. Maxima first tries to evaluate the function and then sends it to
the plotting routines. For instance,

plot2d (f (x) , [x , − 5 , 5])

produces a very uninteresting result: figure 3.1.6, where f(x) appears to be
identically 0. This is because x starts out as < −1 and the first if statement
is activated.

Oddly enough, we must suppress this initial evaluation of f(x) via the
quote-command which sends the literal function-code to the plotting rou-
tines,

plot2d (’ f (x) , [x , − 5 , 5])

to produce figure 3.1.7 on the facing page. Note that only a single quote is
required.

It is somewhat difficult to see the behavior of this function from this
particular plot. The plotting routines only use the minimum range of y-
values necessary to represent the plot. It is better if we extend the range of
y-values and restrict the x-values somewhat. Doing

plot2d (’ f (x) , [x , − 2 , 2] , [y , − . 5 , 1 . 5])

gives figure 3.1.8 on the next page
The programming language built into Maxima has many standard fea-

tures that we will introduce as needed.
In many cases, it’s difficult to analytically integrate a function and we

have to resort to numerical methods. Calculus classes cover many meth-
ods for doing this, like Euler’s Method, the Trapezoid Rule, and Simpson’s
Rule. One of the main Maxima commands for numeric integration is the
quad_qag-command3. Its general format is

3“quad” refers to quadrature, the act of estimating an area bounded by a curve (in ancient
Greek, ‘quad’ literally refers to constructing a square of a given area). The author has no idea
what ‘qag’ represents!

3.1. FUNCTIONS AND PROGRAMMING 35

’f
(x

)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

FIGURE 3.1.7. First plot of f(x)

’f
(x

)

x

-0.5

 0

 0.5

 1

 1.5

-4 -2 0 2 4

FIGURE 3.1.8. Better plot of f(x)

quad_qag (expression , var iab le , low , high , algorithm)

where algorithm is an integer from 1 to 6. The result is a list of four elements

[est imated i n t e g r a l ,
est imated error ,
number of i t e r a t i o n s ,
e r r o r code]

If we compute ∫ 1

.01
sin
(

1
x

)
dx

via

i n t e g r a t e (s i n (1/ x) , x , . 0 1 , 1) ;

36 3. BASIC ALGEBRA AND CALCULUS

we get

2 sin (1) + gamma_incomplete (0, i) + gamma_incomplete (0,−i)
2

− 0.5 gamma_incomplete (0, 100i)− 0.5 gamma_incomplete (0,−100i)
+ 0.005063656411097588

After typing bfloat and expand, we get

5.039818931754155b − 1

which we will regard as the (semi-)exact value. The numerical methods
produce results close to this:

quad_qag (s i n (1/ x) , x , . 0 1 , 1 , 1) ;

produces

[0.5039818931754158, 2.307129694260507 ∗ 10−9, 615, 0]

Clearly, these numeric methods can produce very accurate estimates of def-
inite integrals. Algorithm 6 gives a slightly more accurate estimate but the
difference is not significant.

It is interesting that these numeric algorithms can handle functions de-
fined like f (x) defined in figure 3.1.5 on page 33. Typing

quad_qag (f (x) , x , − 5 , 5 , 1) ;

gives 0. If we change this to

quad_qag (’ f (x) , x , − 5 , 5 , 1) ;

we still get
[0.0, 0.0, 15, 0]

But if we use another algorithm,

quad_qag (’ f (x) , x , − 5 , 5 , 2) ;

we get [
1.333333332896747, 1.138680744111984 · 10−8, 2415, 0

]
which is very close to the correct value of 4/3. The other numeric algo-
rithms give similar results.

3.2. Limits

Maxima can compute limits using L’Hôpital’s rule and others. The
limit-command has the format

l i m i t (expression , var iab le , goal)

and can include an optional direction. For instance

l i m i t ((x^3−x) / (x +1) , x , −1)

produces the result 2. The command

3.3. ELIMINATION THEORY 37

l i m i t (x * log (x) , x , zeroa)

takes the limit of x log(x) as x → 0+, and is completely equivalent to the
command4

l i m i t (x * log (x) , x , 0 , plus)

�

3.3. Elimination theory

We consider the question

Given polynomials

f (x) = anxn + · · ·+ a0(3.3.1)
g(x) = bmxm + · · ·+ b0(3.3.2)

when do they have a common root?
Sylvester studied this problem and solved it using a matrix from which he derived
the resultant of the polynomials, Res(f , g, x).

PROPOSITION 3.3.1. The polynomials f (x) and g(x) have a common root if and only
if Res(f , g, x) = 0.

PROOF. See [40, section 6.2.4]. □

James Joseph Sylvester (1814–1897) was an English mathematician who
made important contributions to matrix theory, invariant theory, number
theory and other fields.

EXAMPLE. For instance, suppose we type

f : x^2−2*x +5;
g : x^3+x −3;

Then

r e s u l t a n t (f , g , x)

gives 169, so these two polynomials have no common roots.

There are many interesting applications of the resultant. Suppose we are given
parametric equations for a curve

x =
f1(t)
g1(t)

y =
f2(t)
g2(t)

where fi and gi are polynomials, and want an implicit equation for that curve, i.e.
one of the form

F(x, y) = 0

4So the constants zeroa and zerob are unnecessary.

38 3. BASIC ALGEBRA AND CALCULUS

This is equivalent to finding x, y such that the polynomials

f1(t)− xg1(t) = 0
f2(t)− yg2(t) = 0

have a common root (in t). So the condition is

Res(f1(t)− xg1(t), f2(t)− yg2(t), t) = 0

This resultant will be a polynomial in x and y. We have eliminated the variable t —
and the study of such algebraic techniques is the basis of Elimination Theory.

EXAMPLE 3.3.2. Let

x = t2

y = t2(t + 1)

Then typing

r e s u l t a n t (t ^2−x , t ^2*(t +1)−y , t)

gives
y2 − 2xy − x3 + x2

Issue the command

subst (t ^2 ,x , y^2−2*x *y−x^3+x ^2)

to get

y^2−2* t ^2*y− t ^6+ t ^4

and

subst (t ^2*(t +1) , y , y^2−2* t ^2*y− t ^6+ t ^4)

to get

t ^4*(t +1)^2− t ^6+ t ^4−2* t ^4*(t +1)

Now, typing

expand (%)

gives 0. So
−x3 + y2 − 2 yx + x2 = 0

after plugging in the parametric equations for x and y.

What is the connection with elimination theory? If we had the equations

x − t2 = 0

y − t2(t + 1) = 0

We could ask the question: “What conditions must x and y, alone, satisfy for these
two equations to be satisfied?” or “How can we eliminate t from the original equa-
tions?”

Exercise 4 on the next page uses this to solve two simultaneous algebraic equa-
tions. This is the main application of the resultant. Solving more complex systems
of algebraic equations requires a construction known as a Gröbner basis, which we
will explore later.

3.3. ELIMINATION THEORY 39

EXERCISES.

1. Compute an implicit equation for the curve defined parametrically by

x = t/(1 + t2)

y = t2/(1 − t)

2. Compute an implicit equation for the curve

x = t/(1 − t2)

y = t/(1 + t2)

3. Compute an implicit equation for the curve

x = (1 − t)/(1 + t)

y = t2/(1 + t2)

4. Solve the equations

x2 + y2 = 1

x + 2y − y2 = 1

by computing a suitable resultant to eliminate y.

5. Find implicit equations for x, y, and z if

x = s + t
y = s2 − t2

z = 2s − 3t2

Hint: Compute resultants to eliminate s from every pair of equations and then elim-
inate t from the resultants.

CHAPTER 4

Differential Equations

“Science is a differential equation. Religion is a boundary condi-
tion.”
— Alan Turing.

4.1. Introduction

Suppose we have a first-order differential equation

dy
dx

= f (x, y)

At each point, the function f (x, y) defines a direction, i.e. a slope. A solu-
tion to the differential equation is a curve through the points whose slope
matches the direction-field defined by f (x, y). Intuition tells us that a solu-
tion passes through each point where f (x, y) is well-defined. Simply draw
a curve in the direction the arrows point. Intuition also tells us that this
solution will be unique: if you steer a car the same way two times in a row,
you end up at the same destination. This is the Cauchy-Lipschitz Theorem
— see [44].

For instance, the equation

(4.1.1)
dy
dx

= x + y

defines the direction-field in figure 4.1.1 on the following page, and a so-
lution is the curve whose direction matches the arrows. We can see this
direction-field by using the plotdf-command:

plotdf (x+y , [x , − 2 , 2] , [y , − 2 , 2])

One nice feature of the resulting plot is that clicking on the plot produces
a solution-curve (computed numerically) to equation 4.1.1 that passes
through the point you clicked.

If the variables in the plot are not x and y, one must list them:

plotdf (u*v , [u , v] , [u , − 2 , 2] , [v , − 2 , 2])

This is a very complex command with many options that can be accessed
from a menu on the plot itself or in the command-line. Each option in the
command-line is enclosed in a list with the name of the option and its value:

(1) [tstep,value] the size of the steps taken in approximating a solu-
tion to the differential equation. The default is .1.

(2) [nsteps,value] the number of steps taken to draw the solution-
curve. Default is 100.

41

42 4. DIFFERENTIAL EQUATIONS

-2 -1 0 1

-2

-1

0

1

2

y

x

FIGURE 4.1.1. Direction-field defined by equa-
tion 4.1.1 on the preceding page

(3) [direction, option] defines the direction of the independent vari-
able that will be followed to compute an integral curve. Possi-
ble values are forward, to make the independent variable increase
nsteps times, with increments tstep, backward, to make the in-
dependent variable decrease, or both that will lead to an integral
curve that extends nsteps forward, and nsteps backward. The key-
words right and left can be used as synonyms for forward and
backward. The default value is both.

(4) [tinitial,value] defines the initial value of variable t used to
compute integral curves. Since the differential equations are
autonomous, that setting will only appear in the plot of the
curves as functions of t. The default value is 0. This refers to an
alternate form of the plotdf-command in analyzing a system of two
differential equations:

dx
dt

= f (x, y)

dy
dt

= g(x, y)(4.1.2)

and we plot the behavior of x versus y (the dependent variables
could have other names, but the independent variable is always
named t) in a command-line

plotdf ([f , g] , [x , y] , [x , − 2 , 2] , [y , − 2 , 2])

(5) [versus_t,number] is used to create a second plot window, with
a plot of an integral curve, as two functions x, y, of the indepen-
dent variable, t. If versus_t is given any value different from 0,
the second plot window will be displayed. The second plot win-
dow includes another menu, similar to the menu of the main plot
window. The default value is 0.

4.1. INTRODUCTION 43

(6) [trajectory_at,coordinates] defines the coordinates xinitial and
yinitial for the starting point of an integral curve. The option is
empty by default. You can set this simply by clicking on the plot.

(7) [“parameter1=val1,parameter2=val2. . . ”] defines a list of param-
eters, and their numerical values, used in the definition of the dif-
ferential equations. The name and values of the parameters must
be given in a string with a comma-separated sequence of pairs
name=value.

(8) [sliders, “par1=min:max,par2=min:max. . . ”] defines a list of pa-
rameters that will be changed interactively using slider buttons,
and the range of variation of those parameters. The names and
ranges of the parameters must be given in a string with a comma-
separated sequence of elements name=min:max.

(9) [xfun, “function1,function2,. . . ”] defines a string with semi-colon-
separated sequence of functions of x to be displayed, on top of the
direction field.

(10) [x,min,max] sets up the minimum and maximum values shown
on the horizontal axis. If the variable on the horizontal axis is not
x, then this option should have the name of the variable on the
horizontal axis. The default horizontal range is from -10 to 10.

(11) [y,min,max] sets up the minimum and maximum values shown on
the vertical axis. If the variable on the vertical axis is not y, then
this option should have the name of the variable on the vertical
axis. The default vertical range is from -10 to 10.

Maxima “knows” the basic methods for symbolically solving first and
second-order differential equations. One of the main commands for this is
the ode2-command , which has the basic form

ode2 (equation , dependent−var , independent −var)

For example

ode2 (’ d i f f (y (x) , x)= x+y (x) , y (x) , x)

results in
y(x) =

(
(−x − 1) ∗ %e−x + %c

)
∗ %ex

where %c is an arbitrary constant. We must quote the diff-command be-
cause we don’t want it to compute the derivative; we just want to indicate
that differentiation takes place. If we type

expand (%)

we get the simplified form

y(x) = %c%ex − x − 1

The ic1-command selects (by adjusting the arbitrary constant) the solution
that passes through a given point.

Given

s o l : ode2 (’ d i f f (y (x) , x)= x+y (x) , y (x) , x)

and

44 4. DIFFERENTIAL EQUATIONS

i c 1 (sol , x =2 ,y (x) =3)

we get

y(x) = %e−2
(
(y(2) + 3)%ex − %e2x − %e2

)
and expand(%) gives

y(x) = y(2)%ex−2 + 3%ex−2 − x − 1

The ode2-command also handles second-order differential equations.
For instance

s o l : ode2 (x * (’ d i f f (y , x , 2)) − ’ d i f f (y , x)+ x =0 ,y , x) ;

produces the output

y = −2x2 log (x)− x2

4
+ %k2x2 − %k1

2

where %k1 and %k2 are arbitrary constants1.
As with first order differential equations, there’s a command to set the

arbitrary constants to appropriate values to satisfy initial conditions: the
ic2-command.

i c 2 (sol , x =1 , y=2 , ’ d i f f (y , x) = 1) ;

produces

y = −2x2 log (x)− x2

4
+

x2

2
+

5
4

This is a perfect opportunity to introduce the ratsimp-command which
simplifies rational expressions2. Typing ratsimp(%) gives

y = −2x2 log (x)− 3x2 − 5
4

In cases where Maxima doesn’t “know” how to solve a differential
equation, it returns with False.

Another interesting “simplification” command is radcan.

EXAMPLE 4.1.1. The Logistics Equation. Imagine there is a population,
P, and a disease is circulating through it. The function y(t) is the num-
ber of people infected and, of course, P − y(t) is the number uninfected.
The probability of people getting infected is proportional to the product of
these, so we get a differential equation

(4.1.3)
dy
dt

= ky
(

1 − y
P

)
We type

l s o l : ode2 (’ d i f f (y , t)=k * y*(1 −y/P) , y , t)

1We can “absorb” the quotient by 2 into %k1!
2Simplifying an expression is a complex process, and Maxima has several commands for

doing this in different ways. It’s not always clear what constitutes simplification.

4.1. INTRODUCTION 45

(1
0
0
*%

e
^t

)/
(%

e
^t

+
9
9
)

t

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

FIGURE 4.1.2. The Logistic Curve

and get

− log (y − P)− log (y)
k

= t + %c

Now, we decide that the first case of this disease happened at time 0 and
issue the command

i c 1 (l s o l , t =0 ,y = 1) ;

to get

− log (y − P)− log (y)
k

=
kt − log (1 − P)

k
which doesn’t quite solve the problem. If we issue the
logcontract-command, we get

log
(

y
y−P

)
k

=
kt − log (1 − P)

k

which is slightly more useful. At this point, we can type

solve (% ,y) ;

to get [
y =

P%ekt

%ekt + P − 1

]
If we set P = 100 and k = 1, we can plot this via

plot2d ((100*% e^ t)/(%e^ t + 9 9) , [t , 0 , 1 0]) ;

to get the well-known Logistic Curve or the Sigmoid Curve in figure 4.1.2
Equation 4.1.3 on the facing page was first proposed by Pierre-François Ver-
hulst in modeling population growth with limited resources. In this case,
P represents the carrying capacity of the environment. The logistic curve is
also used to model bacterial growth.

46 4. DIFFERENTIAL EQUATIONS

Pierre-François Verhulst (1804 – 1849) was a Belgian mathematician from
the University of Ghent. He is best known for the logistic growth model
in his notable paper of 1845. His use of the term “logistic” was probably
influenced by his association with the Belgian military (he briefly taught
in their military academy). For the military, the word “logistics” represent
supplies and shipping.

We also have the desolve-command for solving systems of linear ordi-
nary differential equations. The general format is

desolve ([l i s t of equat ions] , [l i s t of f u n c t i o n s])

EXAMPLE 4.1.2. Suppose we have equations

eqn_1 : ’ d i f f (f (x) , x , 2) = s i n (x) + ’ d i f f (g (x) , x) ;
eqn_2 : ’ d i f f (f (x) , x) + x^2 − f (x) = 2 * ’ d i f f (g (x) , x , 2) ;

We solve them by typing

desolve ([eqn_1 , eqn_2] , [f (x) , g (x)])

and get a huge expression. We can simplify this somewhat by giving initial
conditions

atvalue (’ d i f f (f (x) , x) , x =0 , a) ;
atvalue (f (x) , x = 0 , 1) ;

specifying that f (0) = 1 and

d f
dx

∣∣∣∣
x=0

= a

and re-issue the desolve-command to get

f(x) = −3 sin (x)
5

+
cos (x)

5
+(

(4(2a−2)− 16
5) sin (x

2)
2 − 8 cos (x

2)
5

)
%e

x
2

2

− 2%e−x

5
+ x2 + 2x + 2

and

g(x) = − sin (x)
5

+
2 cos (x)

5
+((

2(10a−18)
5 + 16

5

)
sin (x

2)
2 +

(10a−18) cos (x
2)

5

)
%e

x
2

2

+
2%e−x

5
+ 2x − a + g(0) + 1

4.1. INTRODUCTION 47

Important note: In using desolve, functions must be written as such: in
other words, one must write f (x) rather than just f !

Suppose we have a differential equation like

(4.1.4)
dy
dx

= 3 sin(sin(y))

This is highly nonlinear, and ode2 comes back with∫ 1
sin (sin (y))dy

3
= x + %c

which isn’t very helpful. Maxima’s puny brain simply can’t handle it. In
this case, we are reduced to solving it numerically.

Euler proposed the first numeric algorithm for solving an equation like

dy
dx

= f (x, y)

It involved replacing the derivative by finite differences:

(4.1.5)
∆y
∆x

= f (x, y)

so
f (xi+1) = f (xi) + (xi+1 − xi) · f (xi, yi)

This crude approximation becomes more accurate the smaller xi+1 − xi be-
comes. Maxima uses a similar but more sophisticated algorithm called the
fourth-order Runge-Kutta algorithm.

Carl David Tolmé Runge (1856 – 1927) was a German mathematician,
physicist, and spectroscopist.
He was co-developer and co-eponym of the Runge–Kutta method, in the
field of what is today known as numerical analysis. In addition to pure
mathematics, he did experimental work studying spectral lines of various
elements (together with Heinrich Kayser), and was very interested in the
application of this work to astronomical spectroscopy.

Martin Wilhelm Kutta (1867 – 1944) was a German mathematician.
In 1901, he co-developed the Runge–Kutta method, used to solve
ordinary differential equations numerically. He is also remembered
for the Zhukovsky–Kutta aerofoil (used in modern airplanes), the
Kutta–Zhukovsky theorem and the Kutta condition in aerodynamics.

Maxima implements this with the rk-command, which takes one of the
following two forms:

rk (diff −equation , dependent−var iab le , i n i t i a l −value
[independent −var , s t a r t , f i n i s h , d e l t a])

Note: since the algorithm assumes that all equations are of the form

dy
dx

= f (x, y)

you only list the ’ f (x, y)’ in the algorithm.
The smaller delta is, the more accurate the approximation.

48 4. DIFFERENTIAL EQUATIONS

y

x

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

FIGURE 4.1.3. Output of the Runge-Kutta algorithm

For equation 4.1.4 on the previous page, we could program this as

rk (3 * s i n (s i n (y)) , y , 2 , [x , 0 , 5 , . 0 1])

The command comes back with a long list of the form

[[x1 , y1] , [x2 , y2] , e t c]

We can plot this using the ’discrete’ option to the plot2d-command. This
has the general form

plot2d ([discre te , [[x1 , y1] , [x2 , y2] , e t c .] , [y , lowy , highy])

So we run

p o i n t _ l i s t : rk (3 * s i n (s i n (y)) , y , 2 , [x , 0 , 5 , . 0 1])

and

plot2d ([discre te , p o i n t _ l i s t] , [y , 0 , 5])

to get the plot in figure 4.1.3. One nice feature of the rk-command is that it
can handle systems of differential equations. In this form, it is coded

rk ([ode1 , ode2 , etc ,] , [var1 , var2 , etc ,] ,
[i n i t 1 , i n i t 2 , e t c .] , [independent −var , low , high , d e l t a])

We can solve the system

dx
dt

= 3x − 4y(4.1.6)

dy
dt

= 2x + 3y

via

r e s u l t s : rk ([3 * x −4*y , 2 * x+3*y] , [x , y] , [2 , 3] , [t , 0 , 4 , . 0 1])

The output (results) is a list of the form

[[t1 , x1 , y1] , [t2 , x2 , y2] , e t c .]

which must be reformatted (via the makelist-command) to suit the plot2d-
command:

4.1. INTRODUCTION 49

t

x(t)
y(t)

-100

-50

 0

 50

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 4.1.4. Plot of two solutions

xgraph : makelist ([p [1] , p [2]] , p , r e s u l t s)

and

ygraph : makelist ([p [1] , p [3]] , p , r e s u l t s)

Now we can plot both solutions via

plot2d ([[discre te , xgraph] , [discre te , ygraph]] ,
[y , − 1 0 0 , 1 0 0]) ;

to get figure 4.1.4.

EXERCISES.

1. Solve equations 4.1.6 on the facing page exactly via the desolve-
command.

2. Convert the equation

dy2

dx2 − 3
(

dy
dx

)3
+ 2y = 0

into a system of first-degree equations suitable for solving via the
rk-command.

3. Plot a solution to the differential equation
dy
dx

= x − y2

with y(−1) = 3 with a comparison plot of
√

x.

4. Plot solutions to the system of differential equations
dz
dx

= v

dv
dt

= −kz/m

through the point (z, v) = (6, 0) with k = 2 and a slider for varying m from
1 to 5.

50 4. DIFFERENTIAL EQUATIONS

5. Try simplifying the output of desolve in example 4.1.2 on page 46
using ratsimp. The result will look more complicated, showing that sim-
plification of an expression is a complex question with no obvious solution.
Can these expresssions be further simplified?

4.2. Into the wild

Consider a forest with two populations: rabbits and foxes. The rabbits
live in a leporine paradise — with unlimited resources allowing them to
breed with reckless abandon. At least it would be a paradise were it not for
the voracious foxes. Encounters between rabbits and foxes end badly for
the rabbits and well for the foxes. Rabbits are the foxes’ only sources of
food.

The chances of rabbits meeting foxes is proportional to the product of
their populations. If r(t) and f (t) represent the rabbit and fox populations,
respectively, we get the differential equations

dr
dt

= αr − βr · f

d f
dt

= −γ f + δr · f

where α, β, γ, δ are nonnegative constants.
At first, we’re tempted to use the desolve command to handle these

equations. Unfortunately, the desolve-command only handles linear differ-
ential equations. The terms r · f make these equations very nonlinear.

Alfred James Lotka (1880 – 1949) was a US mathematician, physical
chemist, and statistician, famous for his work in population dynamics and
energetics. An American biophysicist, Lotka is best known for his proposal
of the predator–prey model, developed simultaneously but independently
by Vito Volterra. The Lotka–Volterra model is still the basis of many mod-
els used in the analysis of population dynamics in ecology.

Vito Volterra (1860 – 1940) was an Italian mathematician and physicist,
known for his contributions to mathematical biology and integral equa-
tions, and being one of the founders of functional analysis.

We initially fall back on the trusty plotdf-command.

plotdf ([a * r −b * r * f , − c * f +d* r * f] , [r , f] ,
[parameters , " a = . 2 , b = . 2 , c = . 1 , d = . 2 "] ,
[s l i d e r s , " a = . 1 : 5 , b = . 1 : 5 , c = . 1 : 5 , d = . 1 : 5 "])

To produce figure 4.2.1 on the facing page. The fact that there is a closed
curve shows that there is a periodic phenomena involved. It is interesting
to move the sliders and see where the plot goes.

4.2. INTO THE WILD 51

-8 -4 0 4 8

-10

-5

0

5

10

f

r

FIGURE 4.2.1. Plot of rabbits versus foxes

r

f

-100 0 100

-10

-5

0

5

10

t

FIGURE 4.2.2. Rabbits and foxes

To see actual plots of foxes and rabbits, re-run the command with the
versus_t option set to something nonzero:

plotdf ([a * r −b * r * f , − c * f +d* r * f] , [r , f] ,
[parameters , " a = . 2 , b = . 2 , c = . 1 , d = . 2 "] ,
[s l i d e r s , " a = . 1 : 5 , b = . 1 : 5 , c = . 1 : 5 , d = . 1 : 5 "] ,
[versus_t , 1])

We get a second plot window with actual solutions for rabbits and foxes in
figure 4.2.2.

Again, moving the sliders around varies the behavior of the plots. They
show that, when the fox-population is low, the rabbits freely multiply. Then
the foxes have an abundant food-source and they multiply, causing the
rabbit-population to plunge. This cycle repeats, with slight variations. This
phenomena has been observed in the wild — see [37].

52 4. DIFFERENTIAL EQUATIONS

To get a more accurate (and quantitative solution) we can use the rk-
command:

populat ions : rk ([r − . 01 * r * f , − f + . 01 * r * f] , [r , f] ,
[1 0 0 0 , 1 0] , [t , 0 , 1 0 , . 0 1]) ;

If you examine the numbers coming from this simulation, you will notice
fractional rabbits and foxes — the famous atto-fox problem — where an atto-
fox is 10−18 of a fox3. See [29].

EXERCISES.

1. If a cannon is inclined 30◦and fired with a muzzle-velocity of 1000
meters per second, what is the maximum altitude the shell will reach?
Assume air-resistance is negligible and the acceleration of gravity is -9.8
m/second.

2. Same problem as the above with air-resistance given by

(4.2.1) F =
1
2

CDρAv2

where CD is a dimensionless constant (assume it is .47), ρ is the density
of the air (assume it is 1.225kg/m3 at sea-level and doesn’t change with
altitude), and A is the cross-sectional area of the cannonball (assume it is .2
square meters). Assume the cannonball weighs 4kg.

4.3. The Heat Equation

Imagine a wire that is heated in some fashion. The flow and diffusion
of heat through the wire is expressed by the one-dimensional heat equation

1
a2

∂2ψ(x, t)
∂x2 =

∂ψ(x, t)
∂t

where ψ(x, t) is temperature, x is distance, and t is time. We will discuss its
“meaning” later. In this equation, a is a constant that represents how fast
heat flows through the material in question; we will simplify matters by
assuming it is 1.

In his research on this equation, Fourier discovered that trigonometric
polynomials play an important part. What is a trigonometric polynomial?
For our purposes, it is a linear combination

(4.3.1) f (x) = b0 +
k

∑
j=1

aj sin(jx) + bj cos(jx)

where the coefficients, {ai, bi} are real numbers.

3In this simulation, you may see more atto-rabbits than foxes!

4.3. THE HEAT EQUATION 53

Jean-Baptiste Joseph Fourier (1768 – 1830) was a French mathematician and
physicist born in Auxerre and best known for initiating the investigation of
Fourier series, which eventually developed into Fourier analysis and har-
monic analysis, and their applications to problems of heat transfer and vi-
brations. The Fourier transform and Fourier’s law of conduction are also
named in his honor. Fourier is also generally credited with discovering the
greenhouse effect.

Suppose someone provides us with an unknown function, g(x), (a
“black box” that gives us a function-value when we supply a value for x)
and whispers “This is a trigonometric polynomial”. How are we to check
this claim or compute its coefficients?

If we type

i n t e g r a t e (s i n (n* x) , x,−%pi ,% pi)

we get 0. If we type

i n t e g r a t e (cos (n* x) , x,−%pi ,% pi)

we get

2* s i n (%pi *n)/n

Of course, this is for an arbitrary value of n (like 2.7, for instance). If we
insist that n is an integer, via the declare-command

declare (n , i n t e g e r)

then

i n t e g r a t e (cos (n* x) , x,−%pi ,% pi)

gives 0, so that ∫ π

−π
sin(nx)dx =

∫ π

−π
cos(nx)dx = 0

for n an integer. For f (x) in equation 4.3.1 on the facing page, it follows
that ∫ π

−π
f (x)dx = b0

∫ π

−π
dx = 2πb0

so

(4.3.2) b0 =
1

2π

∫ π

−π
f (x)dx

Next, Fourier noted that

(4.3.3)
∫ π

−π
sin(nx) cos(mx)dx = 0

54 4. DIFFERENTIAL EQUATIONS

because this is an odd function4 integrated over a symmetric range. It follows
that

(4.3.4)
∫ π

π
f (x) sin(nx)dx = a1

∫ π

−π
sin(x) sin(nx)dx+

· · ·+ an

∫ π

−π
sin2(nx)dx + · · ·+ ak

∫ π

−π
sin(nx) sin(kx)dx

+ 0 + · · ·+ 0

If we type

declare (m, i n t e g e r) ;
i n t e g r a t e (s i n (n* x) * s i n (m* x) , x,−%pi ,% pi) ;
i n t e g r a t e (cos (n* x) * cos (m* x) , x,−%pi ,% pi) ;

we learn that get ∫ π

−π
sin(nx) sin(mx)dx = 0(4.3.5) ∫ π

−π
cos(nx) cos(mx)dx = 0(4.3.6)

if n ̸= m.
Incidentally, the reader might wonder what difference there is between

the assume-command on page 32 and the declare-command used here.
The assume-command describes numeric relations (usually inequalities)
that exist between numeric identifiers, and the declare-command
describes properties identifiers have (they might not be numeric ones).

If we type

i n t e g r a t e (s i n (n* x)^2 , x , −%pi ,% pi)

we learn that

(4.3.7)
∫ π

−π
sin(nx) sin(nx)dx = π

It follows that equation 4.3.4 can be rewritten as∫ π

π
f (x) sin(nx)dx = a1 · 0 + · · ·+ an · π + · · ·+ ak · 0

from which we get

(4.3.8) an =
1
π

∫ π

−π
f (x) sin(nx)dx

A similar line of reasoning shows that

(4.3.9) bn =
1
π

∫ π

−π
f (x) cos(nx)dx

So we have an answer to our question:
g(x) is a trigonometric polynomial if only a finite number
of the an and bn, computed using equations 4.3.8 and 4.3.9
are nonzero.

4A function, f (x), is called odd if f (−x) = − f (x).

4.3. THE HEAT EQUATION 55

This would’ve ended matters if Fourier hadn’t taken the next step: apply
these equations to a function that is definitely not a trigonometric polyno-
mial — for instance the bizarre function, f (x), plotted in figure 3.1.8 on
page 35! Recall that it is defined via

f (x) := block ([] , / * no l o c a l v a r i a b l e s * /
i f (x<−1) then return (0) ,
i f (x <0) then return (1) ,
i f (x <=1) then return (x ^2) ,
0) ;

We will define functions to compute the coefficients in equations 4.3.8 on
the preceding page and 4.3.9 on the facing page (following the example of
equation 3.1.2 on page 33):

a (k) : = (i n t e g r a t e (s i n (k * x) , x , − 1 , 0)
+ i n t e g r a t e (s i n (k * x) * x ^2 ,x ,0 ,1))/% pi

If we type a(3), we get

2 sin (2)−cos (2)
4 + cos (2)−1

2 − 1
4

π

which is a bit awkward. This expression should be simplified or consoli-
dated. If we type ratsimp(%), we get

2 sin (2) + cos (2)− 3
4π

which is more compact. We incorporate this into our function for a(k):

a (k) : = ratsimp ((i n t e g r a t e (s i n (k * x) , x , − 1 , 0)
+ i n t e g r a t e (s i n (k * x) * x ^2 ,x ,0 ,1))/% pi)

We also have a similar function to compute the cosine coefficients

b (k) : = ratsimp ((i n t e g r a t e (cos (k * x) , x , − 1 , 0)
+ i n t e g r a t e (cos (k * x) * x ^2 ,x ,0 ,1))/% pi)

If we define b0 via equations 4.3.2 on page 53 and 3.1.2 on page 33,

b0 :2/(3*% pi) ;

Now we write a function to add up terms of the trigonometric polynomials
with these coefficients. There are several ways to do this. We’ll start with
the while-command with a general format

while condi t ion do
(
statement1 ,
statement2 ,
. . .
statementn
)

56 4. DIFFERENTIAL EQUATIONS

x

 0

 0.2

 0.4

 0.6

 0.8

-3 -2 -1 0 1 2 3

FIGURE 4.3.1. First three terms

To compute the sum of the first n terms of our trigonometric polynomial,
we code

f i r s t _ n (n , x) : = block (
[sum:2/(3*% pi) , k : 1] , / * l o c a l v a r i a b l e s * /
while k<=n do
(
sum : sum+a (k) * s i n (k * x)+b (k) * cos (k * x) ,
k : k+1 / * i n c r e m e n t t h e c o u n t e r * /
) ,
sum / * v a l u e r e t u r n e d * /
)

Now we can plot these trigonometric polynomials via

plot2d (f i r s t _ n (3 , x) , [x , − 3 , 3]) ;

to get figure 4.3.1. This doesn’t tell us much but, like Fourier, we persist.
The sum of the first 10 terms gives figure 4.3.2 on the next page,

which is evocative. Plotting this with f(x) (or Wxmaxima-menu item
Plot▷Plot 2d via

plot2d ([f i r s t _ n (1 0 , x) , ’ f (x)] , [x , − 3 , 3]) ;

gives figure 4.3.3 on the facing page.
At this point, we go for broke and compare the first 100 terms via

plot2d ([f i r s t _ n (1 0 0 , x) , ’ f (x)] , [x , − 3 , 3]) ;

to get figure 4.3.4 on the next page.
This is very evocative! Although f(x) is not a trigonometric polynomial,

an infinite series of trigonometric terms seems to converge to it almost ev-
erywhere. This is the famous Fourier Series, and was the beginning of a
whole field of mathematics called harmonic analysis. Notice that Fourier
series are more “powerful” than, say, Taylor series. They can represent
functions that are not necessarily differentiable or even continuous.

4.3. THE HEAT EQUATION 57

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.3.2. First 10 terms

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.3.3. Comparison of first 10 with f(x)

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.3.4. The first 100 terms

Since all the functions that go into a Fourier series are periodic, so is
the series itself — see figure 4.3.5 on the following page.

58 4. DIFFERENTIAL EQUATIONS

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8

FIGURE 4.3.5. Periodicity of a Fourier series

You may notice that the Fourier series “overshoots” and “undershoots”
f(x) at the points where it is discontinuous. This is called Gibbs Phenomena
and is illustrated by typing

plot2d ([(f i r s t _ n (1 0 0 , x) − ’ f (x)) ^ 2] , [x , − 3 , 3]) ;

to get figure 4.3.6 on the next page.
This does not go away as we add more terms; the peaks simply become

narrower. This leads to the question:
In what sense does the Fourier series converge to f(x)?

It turns out5 that if f (x) is any function that can be integrated from −π to
π and if Sn(x) is the sum of the first n terms of the Fourier series for f (x),
then

lim
n→∞

∫ π

−π
(Sn(x)− f (x))2 dx = 0

In other words, the “space between the curves” of f (x) and Sn(x) goes to
zero as n goes to infinity. This is called L2-convergence.

If the original function, f (x), is continuous, the “space between the
curves” of f (x) and Sn(x) going to zero intuitively implies that Sn(x) con-
verges to f (x) for every value of x. This is called “pointwise convergence”.
See [38] for the details.

Claim: Virtually all readers of this book have used Fourier series.
How? The mp3 audio and the jpeg graphic formats are based on

Fourier series. The jpeg format uses a two-dimensional version of it. The
actual jpeg file is a string of Fourier coefficients. If the spikes in the Gibbs
phenomena are narrower than a pixel, they have no effect on the final
image. Something similar happens with mp3 files: the narrow spikes are
high-frequency signals above the range of human hearing.

Maxima has a sum-command that would have eliminated the need for
programming! Its general form is

sum(expression , index_var iable , low , high) ;

5In other words, it is well-known but we won’t prove it here. See [38].

4.4. SOLUTION TO THE HEAT EQUATION 59

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FIGURE 4.3.6. Gibbs Phenomena

and we could’ve written our function as

f i r s t _ n (k , x) : = 2/(3*% pi)
+sum(a (j) * s i n (j * x)+b (j) * cos (j * x) , j , 1 , k) ;

4.4. Solution to the Heat Equation

At this point, the reader may wonder what all of this has to do with the
Heat Equation. Recall that this is

1
a2

∂2ψ(x, t)
∂x2 =

∂ψ(x, t)
∂t

where we assume a = 1. Fourier attempted a particularly simple solution
in the form

ψ(x, t) = u(x) · v(t)
Plugging this into the heat equation gives

u′′v = uv′

and we divide by uv to get

u′′(x)
u(x)

=
v′(t)
v(t)

How can a function of one variable equal another of an unrelated variable?
They both equal the same constant! So we have

u′′(x)
u(x)

=
v′(t)
v(t)

= c

We have
v′(t) = c · v(t)

This is a simple differential equation, but we’ll pretend we don’t know the
solution and use Maxima’s ode2-command for solving ordinary differential
equations of degree ≤ 2. We’ll start with the equation for v(t):

ode2 (’ d i f f (v , t)= c *v , v , t) ;

60 4. DIFFERENTIAL EQUATIONS

Note that we must quote the diff-command because we don’t want Maxima
to try to compute a derivative; we just want to indicate that differentiation
takes place.

We get
v = %c%ect

Here %c is an arbitrary constant that is completely unrelated to c. If c > 0,
then, depending on the sign of %c, we realize that the temperature becomes
exponentially hot over time or exponentially cold.

This is a reminder that not all solutions of the heat equation physically
occur!

To avoid being burned alive or frozen, we’ll assume that c < 0. This is
traditionally written as

u′′(x)
u(x)

=
v′(t)
v(t)

= −λ

where λ > 0. The command

ode2 (’ d i f f (v , t)=−lambda *v , v , t) ;

gives
v = %c%e−t lambda

and the command

ode2 (’ d i f f (u , x ,2)= − lambda *u , u , x) ;

prompts the question of whether lambda is positive, negative or zero6. We
answer ‘positive’ and get

u = %k1 sin
(

x
√

lambda
)
+ %k2 cos

(
x
√

lambda
)

where %k1 and %k2 are arbitrary constants. This gives a basic solution to
the Heat Equation

ψ(x, t) =
(

%k1 sin
(

x
√

lambda
)
+ %k2 cos

(
x
√

lambda
))

e−lambdat

Since the Heat Equation is linear, any linear combination of these basic so-
lutions is also a solution.

At this point, we can set
√

lambda = n, an integer, and get a basic
solution7

ψn(x, t) = (%k1n sin (nx) + %k2n cos (nx)) e−n2t

When t = 0, this looks like a term of a trigonometric polynomial. We hit
upon Fourier’s solution to the Heat Equation:

(1) expand ψ(x, 0) — the initial heat distribution — in a Fourier series,
(2) Multiply the nth term of this Fourier series by e−n2t. The resulting

series defines ψ(x, t) for t ≥ 0.

6Of course we could’ve preceded the ode2 command with assume(lambda>0).
7We have absorbed the constant %c into %k1 and %k2.

4.5. FINER POINTS OF PLOTTING 61

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.4.1. ψ(x, .01)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.4.2. ψ(x, .02)

We can test this with our Fourier series for the discontinuous function f (x)
defined in equation 3.1.1 on page 32. We replace our command for partial
sums of this with

psi_n (k , x , t) : = 2/(3*% pi)
+sum ((a (j) * s i n (j * x)
+b (j) * cos (j * x))*% e^(− j ^2* t) , j , 1 , k) ;

Figures 4.4.1 through 4.4.4 on the following page shows the time-evolution
of ψ: Heat flows from the hotter parts of the wire to the cooler ones. The
“sharp” edges of the function become smooth, and it’s clear that the heat-
distribution becomes constant in the limit as t → ∞.

� �

4.5. Finer points of plotting

Maxima has no built-in plotting capabilities. It uses a very powerful indepen-
dent software package called Gnuplot (automatically installed with Maxima). It
also uses powerful plotting commands built into wxMaxima.

62 4. DIFFERENTIAL EQUATIONS

x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-3 -2 -1 0 1 2 3

FIGURE 4.4.3. ψ(x, .1)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

FIGURE 4.4.4. ψ(x, 1)

The commands plot2d (and plot3d!) only use the most basic features of Gnu-
plot. Since we have mentioned plot3d we may as well discuss it. It’s general form
is

plot3d (two−var iab le −expression , [x , low , high] , [y , low , high]) ;

For example

plot3d (s i n (x^2+y ^ 3) , [x , − 2 , 2] , [y , − 2 , 2]) ;

produces figure 4.5.1 on the next page. The wxMaxima-menu Plot▷Plot 3d
prompts you for all the necessary parameters. One nice thing about these plots is
that you can rotate them with the mouse and see them from many different angles.

We can use the complete repertoire of Gnuplot commands to generate plots
and diagrams. We would like to produce an animated image of the heat-flow in the
wire. wxMaxima provides the with_slider_draw-command for for this. Its general
format is given in figure 4.5.2 on the facing page. This command cycles through the
list of values, setting the variable to each of them and runs the corresponding plot
command.

We would like to plot the flow of heat in our heated wire. We use the command
in figure 4.5.3 on the next page.

4.5. FINER POINTS OF PLOTTING 63

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

sin(y^3+x^2)

x

y

z

FIGURE 4.5.1. An example of plot3d

with_slider_draw (
var iab le , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
l i s t of values ,
plot −command, / * p l o t * /
plot −opt ions / * o p t i o n a l g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE 4.5.2. with_slider_draw

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist (j , j , 0 , 1 0 0) , / * l i s t o f i n t e g e r s * /
e x p l i c i t (psi_n (1 0 0 , x , . 0 1 * t) , x,−%pi ,% pi) , / * p l o t * /
yrange= [0 , 1 . 2] / * o p t i o n a l g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE 4.5.3. Evolution of the heat equation

and wait a long time (Maxima is computing 101 plots of the ψ-function). After-
ward, a window appears with a slider that animates the passage of time. The slider
allows us to move time forward or backward and see how the process changed.
One can right-click this plot to save it as an animated gif file.

In this context, explicit means plotting in the normal fashion that plot2d fol-
lows. The alternative is implicit, which plots points satisfying an equation

draw2d (i m p l i c i t (x^4+y^4=1 ,x , −2 ,2 , y , − 2 , 2))

Before you click Cell▷Evaluate Cell(s) , several explanations are in order. The sec-
ond parameter of with_slider_draw must be a list, i.e. data like

[1, 2, 3]

This particular list would make for a pathetic animation, though — with only 3
frames! What we really need is a list of integers from 0 to 100. Rather than typing
out 101 numbers, we use the all-important makelist-command. It has several forms
and can be used to create or modify lists.

64 4. DIFFERENTIAL EQUATIONS

(1) makelist(expression, variable, i0 , i1) Makes a list of the expression
with the variable set equal to integers from i0 to i1 (incremented by 1
each iteration). For instance

makelist (i , i , 1 , 5)

produces the list
[1, 2, 3, 4, 5]

and

makelist (x= i ^2 , i , 1 , 5)

produces the list

[x = 1, x = 4, x = 9, x = 16, x = 25]

(2) makelist(expression, variable, list) Cycles through the elements of the
list, setting the variable equal to each of them and creating a list of the
expression evaluated at these values. For instance,

makelist (x=y , y , [a , b , [1 , 2]])

produces
[x = a, x = b, x = [1, 2]]

This form of the command can be used to reformat lists. Suppose

a: [[1, 2, 3], [u, v, w], [i, j, k]]

and we issue the command makelist([p[2],p[1],p [2]], p,a). We get the
result

[[2, 1, 2], [v, u, v], [j, i, j]]
Incidentally, these repeated computations (of a(k) and b(k)) could benefit from a
process called memoization. Since a(k) and b(k) only depend on k it would be better
if the functions stored their results and simply did a table-lookup whenever the
same value of k is used a second time. This is called memoizing the computations.
Maxima makes this very simple:

a [k] : = ratsimp ((i n t e g r a t e (s i n (k * x) , x , − 1 , 0)
+ i n t e g r a t e (s i n (k * x) * x ^2 ,x ,0 ,1))/% pi)

b [k] : = ratsimp ((i n t e g r a t e (cos (k * x) , x , − 1 , 0)
+ i n t e g r a t e (cos (k * x) * x ^2 ,x ,0 ,1))/% pi)

All we have done here is replace a(k) by a[k] and b(k) by b[k]. This is a signal
to Maxima to store the computed values in an array. If an array-position already
has a value in it, Maxima suppresses rerunning the function and simply returns
the array-entry. This creates a problem if the program has bugs: it remembers the
incorrect values. To erase these incorrect values, issue the kill-command: kill(a),
kill(b).

We also have to rewrite the psi_n function slightly.

psi_n (k , x , t) : = 2/(3*% pi)
+sum ((a [j] * s i n (j * x) / * r e p l a c e d a (j) by a [j] * /
+b [j] * cos (j * x))*% e^(− j ^2* t) , j , 1 , k) ;

Now you can click Cell▷Evaluate Cell(s) !
For more information on plotting, see Appendix F on page 251.

4.6. THE WAVE EQUATION 65

4.6. The Wave Equation

4.6.1. Introduction. The one-dimensional wave equation looks like the
heat equation with a slight difference

(4.6.1)
∂2ψ(x, t)

∂x2 =
1
c2

∂2ψ(x, t)
∂t2

— the time derivative is second-order. One is to imagine a vibrating string,
where the function ψ(x, t) represents the displacement of the string at any
given position and time.

The one-dimensional version was discovered by d’Alembert; the
higher dimensional wave equation was discovered by Euler.

Jean-Baptiste le Rond d’Alembert (1717 – 1783) was a French mathe-
matician, mechanician, physicist, philosopher, and music theorist. Un-
til 1759 he was, together with Denis Diderot, a co-editor of the Ency-
clopédie. D’Alembert’s formula for obtaining solutions to the wave equa-
tion is named after him. The wave equation is sometimes referred to as
d’Alembert’s equation, and the fundamental theorem of algebra is named
after d’Alembert in French.

D’Alembert found a completely general solution to the
one-dimensional wave equation:

ψ(x, t) = f (x + ct) + g(x − ct)

where f and g are arbitrary twice-differentiable functions8. As clever as this
is, it is not clear how apply it to interesting situations. We will use a Fourier
series approach.

As before, we assume c = 1 and write

ψ(x, t) = u(x) · v(t)

Plugging this into equation 4.6.1 gives

u′′(x) · v(t) = u(x) · v′′(t)

or
u′′(x)
u(x)

=
v′′(t)
v(t)

= −λ

and (via ode2, for instance) we get

u(x) = α cos(x
√

λ + β sin(x
√

λ)

v(t) = γ cos(t
√

λ) + δ sin(t
√

λ)

where α, β, γ, δ are arbitrary constants.
Now imagine that our string is fixed between supports at x = 0 and

x = π so that ψ(0, t) = 0 = ψ(π, t), for all values of t. The simplest way to
ensure this is to set α = 0 and sin(π

√
λ) = 0, or

√
λ = n, an integer.

We will consider two important special cases.

8The reader is invited to verify that this actually satisfies equation 4.6.1.

66 4. DIFFERENTIAL EQUATIONS

4.6.2. The plucked string. This is the kind of string found in a guitar
or harpsichord.

In this case, the string is initially not in motion, so that

(4.6.2)
∂ψ

∂t
= 0

when t = 0. Since a basic solution is

ψk(x, t) = ak sin(kx) (bk sin(kt) + ck cos(kt))

the easiest way to ensure equation 4.6.2 is to set bk = 0 for all k. Our basic
solutions reduce to

ψk(x, t) = ak sin(kx) cos(kt)

and
ψk(x, 0) = ak sin(kt)

If the initial configuration of the string (the “plucking” function) is f (x)
for 0 ≤ x ≤ π, we can define an odd function from −π to π:

f1(x) =

{
f (x) if x ≥ 0
− f (−x) otherwise

and we can expand this in a Fourier series. Since f1(x) is odd, the cosine
terms will all vanish:

bk =
1
π

∫ π

−π
f1(x) cos(kx)dx

=
1
π

∫ 0

−π
f1(x) cos(kx)dx +

1
π

∫ π

0
f1(x) cos(kx)dx

= − 1
π

∫ π

0
f1(x) cos(kx)dx +

1
π

∫ π

0
f1(x) cos(kx)dx

= 0

The sine-terms tend to “double up”

ak =
1
π

∫ π

−π
f1(x) sin(kx)dx

=
1
π

∫ 0

−π
f1(x) sin(kx)dx +

1
π

∫ π

0
f1(x) sin(kx)dx

=
1
π

∫ π

0
f1(x) sin(kx)dx +

1
π

∫ π

0
f1(x) sin(kx)dx

=
2
π

∫ π

0
f1(x) sin(kx)dx

So, we expand f (x) in a Fourier series of sines, and the solution to the wave
equation is

ψ(x, t) =
∞

∑
k=1

ak sin(kx) cos(kt)

If we type

s in (n* x) * cos (n* t)

4.6. THE WAVE EQUATION 67

and issue the trigreduce-command (one of several commands for simplify-
ing trigonometric expressions) we get

sin (nx + nt)
2

+
sin (nx − nt)

2
so

ψ(x, t) =
1
2

(
∞

∑
k=1

ak sin (kx + kt) +
∞

∑
k=1

ak sin (kx − kt)

)
Now we ask ourselves “What is ∑∞

k=1 ak sin (kx)?”
Well

∞

∑
k=1

ak sin (kx) =


f (x) if 0 ≤ x ≤ π

− f (−x) if − π ≤ x ≤ 0
Periodic with period 2π

So we get a closed form solution to the plucked wave equation:
Given a “plucking function9,” f (x), for 0 ≤ x ≤ π define

f̄ (x) =


f (x) if 0 ≤ x ≤ π

− f (−x) if − π ≤ x ≤ 0
Periodic with period 2π

Then
ψ(x, t) =

1
2
(

f̄ (x + t) + f̄ (x − t)
)

Let’s compute!
We start with a “realistic” plucking function

f (x) =

{
x/2 for 0 ≤ x < 1
− x−π

2π−2 for 1 ≤ x ≤ π

This programs as

f (x) : = block ([] ,
i f (x <1) then return (x /2) ,
−(x−%pi)/(2*% pi −2)
)

and we can plot it via

plot2d (’ f (x) , [x ,0 ,% pi] , [y , −1/2 ,1/2])

and we get figure 4.6.1 on the following page.
Now we define f̄ (x):

f _bar (x) : = block ([] ,
i f (x>%pi) then return (f_bar (x−2*%pi)) ,
i f (x<=−%pi) then return (f_bar (x+2*%pi)) ,
i f (x >=0) then return (f (x)) ,
− f (−x)
) ;

9I.e., shape of the string at time 0.

68 4. DIFFERENTIAL EQUATIONS

’f
(x

)

x

-0.4

-0.2

 0

 0.2

 0.4

 0 0.5 1 1.5 2 2.5 3

FIGURE 4.6.1. “Realistic” plucking function

’f
_
b
a
r(

x
)

x

-0.4

-0.2

 0

 0.2

 0.4

-10 -5 0 5 10

FIGURE 4.6.2. The extended plucking function

and, to check this, we plot it

plot2d (’ f_bar (x) , [x , − 1 0 , 1 0] , [y , −1/2 ,1/2])

and get figure 4.6.2.

psi_p (x , t) : = (f_bar (x+ t)+ f_bar (x− t)) / 2

Which we can plot via

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist (j , j , 0 , 1 0 0) , / * l i s t o f i n t e g e r s * /
e x p l i c i t (’ psi_p (x , . 1 * t) , x ,0 ,% pi) , /* p l o t */
yrange= [−1/2 ,1/2] /* opt iona l graphic command */
) ; /* end of with_slider_draw −command */

4.6.3. The “hammered” string. These occur in pianos or hammered
dulcimers. We return to our basic solution

ψk(x, t) = ak sin(kx) (bk sin(kt) + ck cos(kt))

Since ψ(x, 0) = 0, we set the ck to 0, so our basic solution looks like

ψk(x, t) = ak sin(kx) sin(kt)

4.6. THE WAVE EQUATION 69

and
∂ψ

∂t
= ak · k sin(kx) cos(kt)

If we set t = 0, this becomes
∂ψ

∂t

∣∣∣∣
t=0

= ak · k sin(kx)

If h(x) is our “hammering” function — the state of motion of the string
at time 0 — to solve the wave equation we

(1) expand h(x) in a Fourier sine-series as in the plucked case, with
coefficients

ak =
2
π

∫ π

0
h(x) sin(kx)dx

(2) the resulting series for ψ(x, t) is

ψ(x, t) =
∞

∑
k=1

ak
k

sin(kx) sin(kt)

For instance, we can define our hammering function by

h(x) =


0 if 0 ≤ x < 1/2
1 if 1/2 ≤ x ≤ 3/4
0 if 3/4 < x ≤ π

h (x) : = block ([] ,
i f (x <1/2) then return (0) ,
i f (x<=3/4) then return (1) ,
0
) ;

and, to check this, we plot it. We define

a (k):=(2/% pi) * i n t e g r a t e (s i n (k * x) , x ,1/2 ,3/4)

Now we define

psi_h (x , t) : =sum(a (j) * s i n (j * x) * s i n (j * t)/ j , j , 1 , 1 0 0)

and plot it with

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist (j , j , 0 , 1 0 0) , / * l i s t o f i n t e g e r s * /
e x p l i c i t (psi_h (x , . 1 * t) , x ,0 ,% pi) , / * p l o t * /
yrange= [−1/2 ,1/2] / * o p t i o n a l g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

You will benefit from memoizing these computations (as with the heat equa-
tion).

70 4. DIFFERENTIAL EQUATIONS

EXERCISES.

1. Find a closed-form solution of the wave-equation for a hammered
string.

� �

4.6.4. The two-dimensional case. In this case, the wave equation looks like

∂2ψ

∂x2 +
∂2ψ

∂y2 =
1
c2

∂2ψ

∂t2

where ψ(x, y, t) is the displacement of a rectangular drum-head. We try the trick we
used before:

ψ(x, y, t) = u(x)v(y)w(t)

and get the equation

d2u
dx2 v(y)w(t) + u(x)

d2v
dy2 w(t) =

1
c2 u(x)v(y)

d2w
dt2

and divide by u(x)v(y)w(t) to get

1
u(x)

d2u
dx2 +

1
v(y)

d2v
dy2 =

1
c2

1
w(t)

d2w
dt2

As before, functions of x and y can only equal a function of t if they are equal to the
same constant:

1
c2

1
w(t)

d2w
dt2 = −λ

1
u(x)

d2u
dx2 +

1
v(y)

d2v
dy2 = −λ

The second of these equations implies that

1
u(x)

d2u
dx2 = −λ − 1

v(y)
d2v
dy2

so, again, we have a function of x equal to a function of y: they must both equal the
same constant! We have equations

1
c2

1
w(t)

d2w
dt2 = −(a + b)

1
u(x)

d2u
dx2 = −a

1
v(y)

d2v
dy2 = −b

Note that the solutions to the differential equations are

u(x) = r sin(
√

ax) + s cos(
√

ax)(4.6.3)

v(y) = r′ sin(
√

by) + s′ cos(
√

by)

w(t) = r̄ sin(c
√

a + bt) + s̄ cos(c
√

a + bt)

4.6. THE WAVE EQUATION 71

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.5

 1

 1.5

 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

x*(1-x^2)*y*(8-y^3)

x

y

z

FIGURE 4.6.3. Initial position of a two dimensional membrane

Suppose our vibrating surface is L units long, W units wide, and is rigidly
fixed on its boundaries. We’ll also suppose the membrane is at rest initially and has
a shape given by f (x, y), so

f (0, y) = f (L, y) = 0

f (x, 0) = f (x, W) = 0

We can expand f (x, y) in a two-dimensional Fourier series
∞

∑
n,m=1

cn,m sin
(nπx

L

)
sin
(mπy

W

)
where

cn,m =
4

LW

∫ L

0

∫ W

0
f (x, y) sin

(nπx
L

)
sin
(mπy

W

)
dxdy

So equations 4.6.3 on the facing page imply that an elementary solution looks like

(4.6.4) sin
(nπx

L

)
sin
(mπy

W

)
cos

cπt

√
n2

L2 +
m2

W2


We will assume W = 1 , L = 2, c = 1, and define f (x, y) = xy(1 − x2)(8 − y3),

which plots as figure 4.6.3

declare (n , i n t e g e r) ;
declare (m, i n t e g e r) ;
coef [n ,m] : = 2 * i n t e g r a t e (i n t e g r a t e (x * y*(1 − x ^2)*

(8 −y ^3)* s i n (%pi *n* x) * s in (%pi *m* y /2) ,
x , 0 , 1) , y , 0 , 2) ;

which gives

coef(n, m) = −
12
(
− (384π2m2−768)(−1)m

π5m5 − 768
π5m5

)
(−1)n

π3n3

Now we write a function to add up terms of the two-dimensional Fourier series

72 4. DIFFERENTIAL EQUATIONS

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.5

 1

 1.5

 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Function

x

y

z

FIGURE 4.6.4. First three terms of a two-dimensional
Fourier series

f i r s t _ n (n , x , y) : = block (
[] ,
sum(sum(

coef [i , j] * s in (%pi * i * x) * s i n (%pi * j * y/2)
, i , 1 , n) , j , 1 , n))

If we plot the first three terms, via

plot3d (f i r s t _ n (3 , x , y) , [x , 0 , 1] , [y , 0 , 2]) ;

we get figure 4.6.4, which is not bad.
Now we apply equation 4.6.4 on the previous page to get a solution of the wave

equation

∞

∑
n=1

∞

∑
m=1

coef(n, m) sin (nπx) sin
(mπy

2

)
cos

(
πt

√
n2 +

m2

4

)
which we code up via

v ibra te_n (n , x , y , t) : = block (
[] ,
sum(sum(

coef [i , j] * s in (%pi * i * x)
* s in (%pi * j * y/2)
* cos(%pi * t * s q r t (i ^2+ j ^2/4))

, i , 1 , n) , j , 1 , n))

At time t = .4, our plot

plot3d (v ibra te_n (3 , x , y , . 4) , [x , 0 , 1] , [y , 0 , 2]) ;

looks like figure 4.6.5 on the facing page. Notice that the vibration is asymmetric
(you might have to rotate it a bit to see this).

4.6. THE WAVE EQUATION 73

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.5

 1

 1.5

 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

Function

x

y

z

FIGURE 4.6.5. After .4 time units

EXERCISES.

2. Show that∫ π

−π

∫ π

π
sin (nx) sin (my) · sin (n̄x) sin (m̄y) dxdy = 0

if n ̸= n̄ or m ̸= m̄.

CHAPTER 5

Integral transforms

“We are rag dolls made out of many ages and skins, changelings
who have slept in wood nests or hissed in the uncouth guise of
waddling amphibians. We have played such roles for infinitely
longer ages than we have been men. Our identity is a dream. We
are process, not reality, for reality is an illusion of the daylight —
the light of our particular day.”

— Loren Eiseley.

5.1. The Fourier Transform

In this chapter we will begin by approaching Fourier series from an-
other direction, using the simple fact that∫ π

−π
einx · e−imxdx =

{
2π if n = m
0 otherwise

If f (x) is a function, we can compute coefficients via

ak =
1

2π

∫ π

−π
f (x)e−ikxdx

and get a series

f (x) =
∞

∑
k>−∞

akeikx

If we expand our old friend, f (x), defined in equation 3.1.1 on page 32, we
get

ak =
1

2π

(∫ 0

−1
e−ikxdx +

∫ 1

0
x2e−ikxdx

)
or

a [k] : = (i n t e g r a t e (%e^(−% i * k * x) , x , − 1 , 0)
+ i n t e g r a t e (x^2*%e^(−% i * k * x) , x , 0 , 1)) / (2 * % pi)

f i r s t _ n (k , x) : = sum(a [j]*%e^(% i * j * x) , j , −k , k) ;

Now, suppose we want to expand our horizons from [−π, π] to [−L, L]. We
rewrite the equations above to

ak =
1

2L

∫ L

−L
f (x)e−i2πkx/Ldx

75

76 5. INTEGRAL TRANSFORMS

and the Fourier series becomes

f (x) =
∞

∑
k>−∞

ake2πikx/L

and we will rewrite this slightly

ak/L =
∫ L

−L
f (x)e−2πixk/Ldx

and

f (x) =
1

2L

∞

∑
k>−∞

ak/Le2πikx/L

Now, we let L → ∞ and set s = k/L and get

as = a(s) =
∫ ∞

−∞
f (x)e−2πixsdx

f (x) =
∫ ∞

−∞
a(s)e2πixsds

and a(s) is defined to be the Fourier Transform of f (x) — if these integrals
are well-defined!

Let’s compute the Fourier transform of our old friend, f (x), defined
in 3.1.5 on page 33 and plotted in figure 3.1.8 on page 35.

a(s) =
∫ 0

−1
e−2πixsdx +

∫ 1

0
x2e−2πixsdx

or

a (s) : = i n t e g r a t e (%e^(−2*% pi*% i * s * x) , x , − 1 , 0)
+ i n t e g r a t e (x^2*%e^(−2*% pi*% i * s * x) , x , 0 , 1)

Now we plot the real and imaginary parts of a(s)

plot2d ([r e a l p a r t (a (s)) , imagpart (a (s))] , [s , − 4 , 4]) ;

to get figure 5.1.1 on the facing page. The plot-command complains about
division by zero, although it manages to generate the plot.

To see why, do indefinite integrals:

i n t e g r a t e (%e^(−2*% pi*% i * s * x) , x)

gives
ie−2πixs

2πs
i n t e g r a t e (x^2*%e^(−2*% pi*% i * s * x) , x)

gives (
2π2is2x2 + 2πsx − i

)
e−2πixs

4π3s3

with s in the denominator in both cases! On the other hand a(0) is a perfectly
well-defined 4/3, as the plot shows.

We have effectively decomposed f (x) into a continuous infinity of pe-
riodic functions. The Fourier transform recognizes periodic behavior of a
function and gives its intensity at different frequencies.

5.2. THE DISCRETE FOURIER TRANSFORM 77

s

fun1

fun2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-4 -3 -2 -1 0 1 2 3 4

FIGURE 5.1.1. Fourier transform of f (x)

5.2. The discrete Fourier transform

Although Maxima doesn’t have built-in commands to implement
Fourier transforms analytically, it does implement fast numeric algorithms
for discrete Fourier transforms.

If {xj} i = 1 . . . n is a sequence of numbers, its discrete Fourier transform
is defined via

(5.2.1) y(k) =
1
n

n−1

∑
j=0

x(j)e2πi·jk/n

and its inverse is defined by

(5.2.2) x(j) =
n−1

∑
j=0

y(k)e−2πi·jk/n

These are the definitions used by Maxima; there are many others.
Many (most?) authors swap these definitions — they define the Fourier
transform via equation 5.2.2 and the inverse via 5.2.1.

Although these are straightforward enough, they become cumbersome
when the sequences are long (as they are in practice). An algorithm was
discovered when n = 2m for some integer m > 0 — attributed to Cooley
and Tukey (but really discovered centuries earlier by Gauss!), called the
Fast Fourier Transform.

James William Cooley (1926 – 2016) was an American mathematician. He
was a programmer on John von Neumann’s computer at the Institute for
Advanced Study, Princeton, NJ, from 1953 to 1956, where he notably pro-
grammed the Blackman–Tukey transformation.
He worked on quantum mechanical computations at the Courant Institute,
New York University, from 1956 to 1962, when he joined the Research Staff
at the IBM Watson Research Center, Yorktown Heights, NY. Upon retire-
ment from IBM in 1991, he joined the Department of Electrical Engineering,
University of Rhode Island, Kingston, where he served on the faculty of the
computer engineering program.

78 5. INTEGRAL TRANSFORMS

John Wilder Tukey (1915 – 2000)) was an American mathematician and
statistician, best known for the development of the fast Fourier Transform
(FFT) algorithm and box plot. The Tukey range test, the Tukey lambda
distribution, the Tukey test of additivity, and the Teichmüller–Tukey lemma
all bear his name. He is also credited with coining the term ‘bit’ and the first
published use of the word ‘software’.

The Fast Fourier Transform commands occur in a library loaded via

load (" f f t ")

The most basic commands in question are fft and inverse_fft. The follow-
ing code shows that they really are inverses.

load (" f f t ") ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
L : [1 , 1 + %i , 1 − %i , −1 , −1 , 1 − %i , 1 + %i , 1] ;
L1 : f f t (L) ;
[0 . 5 , 0 . 5 , 0 . 2 5 %i − 0 . 2 5 , (− 0 .3536 %i) − 0 . 3 5 3 6 , 0 . 0 ,

0 . 5 , (− 0 . 2 5 %i) − 0 . 2 5 , 0 .3536 %i + 0 . 3 5 3 6]
L2 : i n v e r s e _ f f t (L1) ;
[1 . 0 , 1 . 0 %i + 1 . 0 , 1 . 0 − 1 . 0 %i , − 1 . 0 , − 1 . 0 ,

1 . 0 − 1 . 0 %i , 1 . 0 %i + 1 . 0 , 1 . 0]
lmax (abs (L2 − L)) ;

0 . 0

The most straightforward application of the discrete Fourier transform is
detecting periodic behavior in sequences of numbers.

To introduce a more interesting (and widely-used) application, we
need:

DEFINITION 5.2.1. Let A = {ai}, i = 0, . . . , n − 1 and B = {bj}, j =
0, . . . m − 1 be sequences of numbers. The convolution A⋆B = {ck}, k =
0, . . . , n + m − 1 of these sequences is defined by

ct =
t

∑
i=0

aibt−i

where ai = 0 if i /∈ 0, . . . n − 1 and bj = 0 if j /∈ 0, . . . , m.

REMARK. This also well-defined in the continuous case

f⋆g(s) =
∫ ∞

−∞
f (x)g(s − x)dx

We have the well known

THEOREM 5.2.2 (Convolution Theorem). If A is a sequence of numbers, let
F(A) denote the discrete Fourier transform of A. If A and B are finite sequences
of numbers of length n, then F(A⋆B)i = n ·F(A)i ·F(B)i for all i. In particular

(5.2.3) A⋆B = n · F−1 (F(A) · F(B))

where ‘·’ represents element-by-element multiplication.

5.2. THE DISCRETE FOURIER TRANSFORM 79

REMARK. See [34] for a proof. So Fourier transforms convert convolu-
tions into simple multiplications. If we follow the widespread convention
mentioned above, the factor of n is unnecessary. In other words, using
Maxima’s conventions

(5.2.4) A⋆B = F
(
F−1(A) · F−1(B)

)
A similar result is true in the continuous case (without the factor of n!).
The fast Fourier transformation and its inverse are so fast, equation 5.2.3

on the preceding page is faster than direct computation — at least if the
sequences are sufficiently large.

The reader might ask
Why do we care about convolutions?

They have applications to
(1) Analyzing signals.
(2) Multiplication of polynomials (the coefficients of the product are

a convolution of the coefficients of the factors), if the polynomials
are large (hundreds of terms).

(3) Multiplication of numbers with hundreds of digits — we can re-
gard them as polynomials evaluated at 10 with coefficients that
are integers 0 . . . 9.

EXAMPLE 5.2.3. Suppose we want to form the convolution of the se-
quences

{1, 4, 2, 5} and {3, 1, 3, 2}
representing coefficients of cubic polynomials 1 + 4x + 2x2 + 5x3 and 3 +
x + 3x2 + 2x3. Their convolution will be of length 7 so we extend these to
length 8 = 23 by zeroes on the right and execute the code:

load (" f f t ") ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
A : [1 , 4 , 2 , 5 , 0 , 0 , 0 , 0] ;
B : [3 , 1 , 3 , 2 , 0 , 0 , 0 , 0] ;
fa : f f t (A) ;
fb : f f t (B) ;
f c : fa * fb ; / * element by element m u l t i p l i c a t i o n */
C : r e a l p a r t (8 * i n v e r s e _ f f t (f c)) ;

You will notice that the output of the inverse_fft command has imaginary
parts that are very small (∼ 10−17). All the intermediate computations used
complex numbers that don’t quite cancel in the end due to round-off errors.
The simplest way to deal with these is to take the realpart.

There are other Maxima commands to take transforms of real-valued
sequences (with a faster algorithm) or to use bfloat’s in the computations
(so the round-off errors are much smaller).

80 5. INTEGRAL TRANSFORMS

EXERCISES.

1. Show that convolution is commutative and associative. In other
words, if A, B, and C are sequences of numbers, show that

A⋆B = B⋆A

A⋆(B⋆C) = (A⋆B)⋆C

2. In example 5.2.3 on the preceding page, why did we extend the se-
quences until they had length 8?

3. Run example 5.2.3 on the previous page using equation 5.2.4 on the
preceding page.

4. Compute the cube of the polynomial 2 − 4x + x2 − x3 using convo-
lution and equation 5.2.4 on the previous page.

5.3. The Laplace Transform

The Fourier transform inspired Laplace to develop a variation of it that
is useful in solving linear differential equations. The Laplace Transform of a
function, f (x), is defined by

(5.3.1) L(f)(s) =
∫ ∞

0
e−sx f (x)dx

(if the integral is well-defined!) with an inverse

L−1(F)(x) = lim
T→∞

1
2πi

∫ γ+iT

γ−iT
exsF(s)ds

where γ is a real number set to something that makes the integral converge
(if possible!).

5.3. THE LAPLACE TRANSFORM 81

Pierre-Simon, marquis de Laplace (1749 – 1827) was a French scholar whose
work was important to the development of engineering, mathematics, sta-
tistics, physics, astronomy, and philosophy. He summarized and extended
the work of his predecessors in his five-volume Mécanique céleste (Celestial
Mechanics) (1799–1825). This work translated the geometric study of clas-
sical mechanics to one based on calculus, opening up a broader range of
problems. In statistics, the Bayesian interpretation of probability was de-
veloped mainly by Laplace.
Laplace formulated Laplace’s equation, and pioneered the Laplace trans-
form which appears in many branches of mathematical physics, a field
that he took a leading role in forming. The Laplacian differential opera-
tor, widely used in mathematics, is also named after him. He restated and
developed the nebular hypothesis of the origin of the Solar System and was
one of the first scientists to suggest an idea similar to that of a black hole.
Laplace is regarded as one of the greatest scientists of all time. Sometimes
referred to as the French Newton or Newton of France, he has been de-
scribed as possessing a phenomenal natural mathematical faculty superior
to that of almost all of his contemporaries. He was Napoleon’s examiner
when Napoleon attended the École Militaire in Paris in 1784. Laplace be-
came a count of the Empire in 1806 and was named a marquis in 1817, after
the Bourbon Restoration.

Both the Laplace transform and its inverse are built in to Maxima (it’s
not necessary to load any libraries):

laplace (x ^3 ,x , s) ; /* The Laplace transform . */

gives
6
s4

i l t (6/ s ^4 , s , x) ; /* The Inverse Laplace transform . */

recovers x3.
As we said earlier, the Laplace Transform is useful in solving linear

differential equations. To see why, note that

L(f ′(x) = s ·L(f)− f (0)

which you can see by integrating equation 5.3.1 on the facing page by parts
or typing

laplace (’ d i f f (f (x) , x) , x , s) ;

to get

s * laplace (f (x) , x , s) − f (0)

Suppose we want to solve the differential equation of a harmonic oscillator
as in figure 5.3.1 on the next page.

82 5. INTEGRAL TRANSFORMS

FIGURE 5.3.1. Harmonic oscillator

We assume the mass bobs back and forth without friction and get a
differential equation like

(5.3.2)
d2 f
dx2 + 3 f = 0

where f is the displacement of the mass and x is time. We apply the Laplace
Transform to get

− f ′(0) + s2L(f) + 3L(f)− s f (0) = 0

and solve for L(f) to get

L(f) =
s f (0) + f ′(0)

s2 + 3
The command

i l t ((s * f (0) + fp (0)) / (s ^2+3) , s , x) ;

shows that

f (x) =
f ′(0) sin

(√
3x
)

√
3

+ f (0) cos
(√

3x
)

Figure 5.3.2 on the facing page shows a plot of the motion when f ′(0) = 0
and f (0) = 1.

5.3. THE LAPLACE TRANSFORM 83

c
o
s
(s

q
rt

(3
)*

x
)

x

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10

FIGURE 5.3.2. Simple harmonic motion

Now consider the case of a forcing function:

d2 f
dx2 + 3 f = sin(2x)

Here, the function sin(2x) is driving the oscillator. We apply the Laplace
Transform to both sides of the equation to get

(5.3.3) − f ′(0) + s2L(f) + 3L(f)− s f (0) =
2

s2 + 4
We can solve this for L(f) (using solve!) to get

L(f) =
f (0)s3 + f ′(0)s + 4s f (0) + 4 f ′(0) + 2

s4 + 7s2 + 12
Now we take the inverse Laplace Transform to get

f (x) =
(f ′(0) + 2) sin(

√
3x)√

3
+ f (0) cos(

√
3x)− sin(2x)

One nice aspect of this solution is that it explicitly shows the effect of initial
conditions.

If f ′(0) = 0 and f (0) = 1, we get the motion in figure 5.3.3 on the next
page.

One shortcoming of the Maxima’s Laplace transform package is its
failure to deal with Heavyside functions. These are functions of the form
H(x − α) where H(x) is defined by

H(x) =

{
0 if x < 0
1 if x ≥ 0

These are interesting because:
� every piecewise-defined function can be expressed as a linear

combination of Heavyside functions and ordinary functions

84 5. INTEGRAL TRANSFORMS

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

FIGURE 5.3.3. Forced harmonic motion

� Laplace transforms of such functions can be easily calculated

LEMMA 5.3.1. Let f (x) be a function that has a Laplace transform and let
α ∈ R be such that α ≥ 0. Then

(5.3.4) L (H(x − α) f (x)) = e−αsL(f (x + α))

It follows that

(5.3.5) L−1 (e−αsg(s)
)
= H(x − α) ·L−1(g)(x − α)

PROOF. From the definition

L(H(x − α) f (x)) =
∫ ∞

0
e−xsH(x − α) f (x)dx

=
∫ ∞

α
e−xs f (x)dx

Now let u = x − α, so x = u + α and substitute∫ ∞

α
e−xs f (x)dx =

∫ ∞

0
e−(u+α)s f (u + α)dx

= e−αs
∫ ∞

0
e−us f (u + α)dx

e−αsL(f (u + α))

□

EXAMPLE 5.3.2. Suppose the driving force of our harmonic oscillator
is given by

d(x) =

{
1 if 1/2 ≤ x ≤ 1
0 otherwise

Then d(x) = H(x − 1/2)− H(x − 1) and our version of equation 5.3.3 on
the preceding page is

− f ′(0) + s2L(f) + 3L(f)− s f (0) = e−s/2 − e−s

5.3. THE LAPLACE TRANSFORM 85

giving

L(f) =
s f (0) + f ′(0) + e−s/2 − e−s

s2 + 3

=
s

s2 + 3
f (0) +

1
s2 + 3

f ′(0) +
e−s/2

s2 + 3
− e−s

s2 + 3
(5.3.6)

Now we isolate each term of the form

e−asr(s)

where a is a real number and compute

H(x − a)L−1(r)(x − a)

In the case of equation 5.3.6, we take the inverse Laplace transform using
the ilt-command for the first two terms, and the ilt-command coupled with
equation 5.3.5 on the facing page to handle the remaining two terms:

f (x) = cos(
√

3 · x) f (0) +
sin(

√
3 · x)√
3

f ′(0)

+ H(x − 1/2) · sin(
√

3 · (x − 1/2))√
3

− H(x − 1) · sin(
√

3 · (x − 1))√
3

If we assume that the string was initially at rest, we get

f (x) = H(x − 1/2) · sin(
√

3 · (x − 1/2))√
3

− H(x − 1) · sin(
√

3 · (x − 1))√
3

which is plotted in figure 5.3.4 on the next page. Here, we have coded

H(x) : = block (
[] ,
i f (x >=0) then return (1) ,
0)

EXERCISES.

1. Is the function depicted in figure 5.3.3 on the facing page periodic?

2. Represent the piecewise function

f (x) =


0 if x < 2
x2 if x < 3
−x if x < 5
0 if x ≥ 5

as a linear combination of Heavyside functions (the coefficients may be
arbitrary ordinary functions).

86 5. INTEGRAL TRANSFORMS

’h
a

r(
x
)

x

-0.4

-0.2

 0

 0.2

 0.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 5.3.4. Discontinuous driving force

3. Use Laplace transforms to solve the differential equation

d2y
dx2 +

dy
dx

+ x = f (x)

where f (x) is defined in exercise 2 on the previous page.

CHAPTER 6

Orthogonal polynomials

“It is a matter for considerable regret that Fermat, who cultivated
the theory of numbers with so much success, did not leave us
with the proofs of the theorems he discovered. In truth, Messrs
Euler and Lagrange, who have not disdained this kind of re-
search, have proved most of these theorems, and have even sub-
stituted extensive theories for the isolated propositions of Fermat.
But there are several proofs which have resisted their efforts.”
— Adrien-Marie Legendre.

6.1. Introduction

As we saw in section 4.3 on page 52, it is possible to expand func-
tions (even discontinuous ones!) in a series of sines and cosines. How
was this possible? After some thought, it becomes clear that the key was
equations 4.3.3 on page 53, 4.3.5 on page 54, and 4.3.7 on page 54 — the
so-called orthogonality relations.

Is it possible to find similar relations between other sets of functions?
We will construct a set of orthogonal polynomials {Pi(x)} with

(6.1.1)
∫ 1

−1
Pi(x)Pj(x)dx = 0

if i ̸= j.
The simplest candidate for P0 is 1, so we will pick it. The linear poly-

nomial is of the form a0 + a1x∫ 1

−1
1 · (a0 + a1x)dx = 2a0

For the polynomials to be orthogonal, we set a0 = 0 and set a1 = 1, so
p1(x) = x. We also have ∫ 1

−1
P1(x)2dx =

2
3

The general form of P2(x) is a0 + a1x + a2x2. We get

i n t e g r a t e (1 * (a_0+a_1 * x+a_2 * x ^2) , x , − 1 , 1) ; ratsimp (%) ;

which gives
2a2 + 6a0

3

i n t e g r a t e (x * (a_0+a_1 * x+a_2 * x ^2) , x , − 1 , 1) ; ratsimp (%) ;

87

88 6. ORTHOGONAL POLYNOMIALS

Field Source

x′

x
θ

Origin

FIGURE 6.1.1. Model for Legendre polynomials

gives
2a1

3
We uniquely determine coefficients by requiring Pi(1) = 1:

solve ([2 * a_2 +6* a_0 =0 ,2* a_1 =0 , a_0+a_1+a_2 =1] ,
[a_0 , a_1 , a_2])

and get [[
a0 = −1

2
, a1 = 0, a2 =

3
2

]]
so

P2(x) =
3
2

x2 − 1
2

In this fashion, we can inductively construct a sequence of polynomials
{Pi(x)} satisfying equation 6.1.1 on the preceding page. Of course, we are
not the first people to think of this. The {Pi(x)} are called the Legendre
Polynomials after the first person to study them.

Adrien-Marie Legendre (1752 – 1833) was a French mathematician who
made numerous contributions to mathematics. Well-known and important
concepts such as the Legendre polynomials and Legendre transformation
are named after him.
In 1782, he first introduced his polynomials as coefficients in the expansion
of the Newtonian Potential energy

1
|x − x′| =

1√
|x|2 + |x′|2 − 2|x||x′| cos θ

(6.1.2)

=
∞

∑
ℓ=0

|x′|ℓ

|x|ℓ+1 Pℓ(cos θ)

where θ is the angle between the vectors x and x′, and |x′| < |x| — see
figure 6.1.1.
Figure 6.1.2 on the facing page show plots of the first six Legendre polyno-
mials.

Nowadays, they crop up when one converts the heat and wave equa-
tions to spherical coordinates (latitude, longitude, and radius). Since the

6.1. INTRODUCTION 89

x

P0

P1

P2

P3

P4

P5

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

FIGURE 6.1.2. The first six Legendre polynomials

Schrödinger Wave equation is related to the Heat equation, Legendre poly-
nomials also are widely used in Quantum Mechanics.

Legendre and others have discovered some of their properties:
Besides orthogonality, we have

(6.1.3)
∫ 1

−1
Pn(x)2dx =

2
2n + 1

(this isn’t obvious!).
Luckily, people have compiled a Maxima library of Legendre polyno-

mials (and many other systems of orthogonal polynomials) accessed by

load (" orthopoly ")

The Legendre polynomials are given by legendre_p(n,x). If we type

legendre_p (5 , x)

we get

−15 (1 − x)− 63(1 − x)5

8
+

315(1 − x)4

8
− 70(1 − x)3 +

105(1 − x)2

2
+ 1

and expand(%) gives a simplified form

63x5

8
− 35x3

4
+

15x
8

Recall our old friend, the discontinuous function f (x), plotted in 3.1.8 on
page 35:

f (x) := block ([] , / * no l o c a l v a r i a b l e s * /
i f (x<−1) then return (0) ,

90 6. ORTHOGONAL POLYNOMIALS

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5 0 0.5 1

FIGURE 6.1.3. First 5 terms of a Legendre series

i f (x <0) then return (1) ,
i f (x <=1) then return (x ^2) ,
0) ; / * d e f a u l t f i n a l v a l u e * /

We’ll expand this in a series of Legendre polynomials using the same meth-
ods as for Fourier series:

ak =

∫ 1
−1 legendre_p(k, x) f (x)dx∫ 1
−1 legendre_p(k, x)2dx

Translated into Maxima, this is

a [n] : = ((2 * n + 1) / 2) * (i n t e g r a t e (legendre_p (n , x) , x , − 1 , 0)
+ i n t e g r a t e (legendre_p (n , x) * x ^2 ,x , 0 , 1)) ;

where
2n + 1

2
=

1∫ 1
−1 legendre_p(k, x)2dx

— see equation 6.1.3 on the preceding page. We finally get our series:

part ia l_sum (k , x) : =sum(a [n] * legendre_p (n , x) , n , 0 , k)

If we plot the first five terms against f (x):

plot2d ([’ f (x) , part ia l_sum (5 , x)] , [x , − 1 , 1]) ;

we get figure 6.1.3.
If we try 20 terms, we get figure 6.1.4 on the facing page. The Legendre

series is clearly trying to approximate f (x) — just as a Fourier series did.
As with Fourier series, it turns out1 that the Legendre series converges

in the manner

lim
n→∞

∫ 1

−1
(partial_sum(n, x)− f (x))2 dx = 0

1I.e., we’re not going to prove this here!

6.2. WEIGHTED ORTHOGONALITY 91

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

FIGURE 6.1.4. First 20 terms of a Legendre series

Many applications of Legendre polynomials come from equation 6.1.2
on page 88: if we are in spherical coordinates and have a charge situated at
the end of vector x′, the potential energy at the end of vector x is expressed
in the series of Legendre polynomial given above.

EXERCISES.

1. Legendre polynomials satisfy Bonnet’s Recursion Formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Write a Maxima function to compute Pn(x), using this.

2. Expand sin x in a series of Legendre polynomials and compare with
the Taylor series of the sine-function.

3. Do three-dimensional plots of P2(cos θ), P3(cos θ), P4(cos θ) in cylin-
drical coordinates, where θ is the angle from the x − y-plane and radius is
1.

6.2. Weighted orthogonality

There are many other systems of orthogonal polynomials in common
use. We will only touch on a few of them.

6.2.1. Chebyshev Polynomials. We begin with Chebyshev Polynomi-
als, {Tn(x)}, defined by

(6.2.1) Tn(cos θ) = cos nθ

92 6. ORTHOGONAL POLYNOMIALS

x

1
x

(-4*(1-x))+2*(1-x)^2+1
(-9*(1-x))-4*(1-x)^3+12*(1-x)^2+1

(-16*(1-x))+8*(1-x)^4-32*(1-x)^3+40*(1-x)^2+1

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

FIGURE 6.2.1. The first four Chebyshev polynomials

They are orthogonal in the sense that2

(6.2.2)
∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =


0 if |m| ̸= |n|
π if n = m = 0
π/2 if n = m > 0

so they are orthogonal with a weight-function

1√
1 − x2

Pafnuty Lvovich Chebyshev (Пафну́тий Льво́вич Чебышёв) (1821 – 1894)
was a Russian mathematician and considered to be the founding father of
Russian mathematics.

Figure 6.2.1 shows the first four Chebyshev polynomials.
When we expand a functions (like f (x)) in a series of Chebyshev poly-

nomials, we must take the weight function into account:

a0 =
1
π

∫ 1

−1

f (x)√
1 − x2

dx

ak>0 =
2
π

∫ 1

−1

f (x)Tk(x)√
1 − x2

dx

In Maxima’s orthopoly package, they are called chebyshev_t (n, x).
Our Maxima commands are and we sum up terms of the series via

part ia l_sum (k , x) : = a0+sum(a [n] * chebyshev_t (n , x) , n , 1 , k)

If we plot the first twenty terms against our discontinuous function f (x):

2This is easily derived from definition 6.2.1 on the preceding page, equations 4.3.3 on
page 53, 4.3.6 on page 54, and 4.3.7 on page 54 and a suitable u-substitution.

6.2. WEIGHTED ORTHOGONALITY 93

a0 :(1/% pi) * (i n t e g r a t e (1/ s q r t (1 −x ^2) , x , − 1 , 0)
+ i n t e g r a t e (x^2/ s q r t (1 −x ^2) , x , 0 , 1)) ;
a [n]:=(1/% pi) *
(i n t e g r a t e (chebyshev_t (n , x)/ s q r t (1 −x ^2) , x , − 1 , 0)
+ i n t e g r a t e (chebyshev_t (n , x) * x^2/ s q r t (1 −x ^2) , x , 0 , 1)) ;

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

FIGURE 6.2.2. First 20 terms of a Chebyshev expansion

plot2d ([’ f (x) , part ia l_sum (2 0 , x)] , [x , − 1 , 1]) ;

we get figure 6.2.2. The weight-function plays a part in how the Chebyshev
series converges to f (x). We have

lim
n→∞

∫ 1

−1

(partial_sum(n, x)− f (x))2
√

1 − x2
dx = 0

As figure 6.2.3 on the following page shows, it prioritizes the endpoints
of the interval [−1, 1].

It is known (which we won’t prove!) that for continuous functions
(something our f (x) isn’t) the Chebyshev series converges more rapidly
than any other series of orthogonal polynomials — see [30]. This means
they have important applications in numerical analysis. For instance many
software-library functions for sines and cosines use Chebyshev expansions.

6.2.2. Laguerre Polynomials. Laguerre Polynomials are defined as
certain solutions of the Laguerre Differential equation:

x
d2y
dx2 + (1 − x)

dy
dx

+ ny = 0

where n ≥ 0 is an integer. The only nonsingular solution of this is the
nth Laguerre polynomial, Ln(x) =laguerre (n, x). These polynomials are
orthogonal with respect to the weight function e−x:∫ ∞

0
e−xlaguerre(n, x) · laguerre(m, x)dx = 0 if n ̸= m

94 6. ORTHOGONAL POLYNOMIALS

1
/s

q
rt

(1
-x

^2
)

x

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGURE 6.2.3. Weight-function for Chebyshev expansions

x

1
1-x

x^2/2-2*x+1
(-x^3/6)+(3*x^2)/2-3*x+1

x^4/24-(2*x^3)/3+3*x^2-4*x+1

-4

-3

-2

-1

 0

 1

 2

 3

 0 1 2 3 4 5

FIGURE 6.2.4. Laguerre polynomials

and3 ∫ ∞

0
e−xlaguerre(n, x)2dx = 1

3These are not obvious!

6.2. WEIGHTED ORTHOGONALITY 95

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

FIGURE 6.2.5. Expansion of f(x) in 100 Laguerre polynomials

Edmond Nicolas Laguerre (1834 – 1886) was a French mathematician and
a member of the Académie des sciences (1885). His main works were in
the areas of geometry and complex analysis. He also investigated orthogo-
nal polynomials. Laguerre’s method is a root-finding algorithm tailored to
polynomials.

The Laguerre polynomials arise in quantum mechanics, in the radial
part of the solution of the Schrödinger equation for a one-electron atom.
We will expand our discontinuous function in these polynomials with co-
efficients

a0 : i n t e g r a t e (%e^(−x) * x ^2 ,x , 0 , 1) ;
a [n] : = i n t e g r a t e (l aguerre (n , x) * x^2*%e^(−x) , x , 0 , 1) ;

and partial sum

part ial_sum (k , x) : = a0+sum(a [n] * laguerre (n , x) , n , 1 , k)

If we plot the first 100 terms of the series, we get figure 6.2.5, which doesn’t
look very good until you realize that it only converges with the weight
function e−x.

In other words ∫ ∞

0
e−x| f (x)− pn(x)|dx → 0

as n → ∞, where pn(x) is the nth partial sum of a Laguerre series. Since
e−x tapers off rapidly as x increases, we don’t really care what pn(x) does
for large values of x.

96 6. ORTHOGONAL POLYNOMIALS

Laguerre polynomials are often used to numerically estimate integrals
of the form ∫ ∞

0
e−x f (x)dx

(for the degree-n form of the equation with n ≥ 1) via the Gauss-Laguerre
quadrature formula

(6.2.3)
∫ ∞

0
e−x f (x)dx ≈

n

∑
i=1

wi f (xi)

where the {xi} are the roots of Ln(x) and the weights {wi} are given by

(6.2.4) wi =
xi

(n + 1)2Ln+1(xi)

see [39].

EXERCISES.

1. Code a function the does Gauss-Laguerre quadrature using equa-
tions 6.2.3 and 6.2.4 . Hint: use the allroots command to find the roots of
Ln(x)).

6.2.3. Hermite polynomials. These are orthogonal with respect to the
weight function e−x2

. They exist in two closely-related forms, the physicist’s
Hermite polynomials, defined by

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
and the probability-theorist’s form

Hen(x) = (−1)nex2/2ex2 dn

dxn

(
e−x2/2

)
We will consider the physicist’s form here, which appear naturally in the
Schrödinger wave equation for a harmonic oscillator in quantum mechan-
ics.

Their orthogonality relations are∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =

{
0 if n ̸= m√

π2nn! otherwise

In the orthopoly library, the nth Hermite polynomial is denoted
hermite(n,x). The first five Hermite polynomials are plotted in figure 6.2.6
on the facing page.

6.2. WEIGHTED ORTHOGONALITY 97

x

1
2*x

-2*(1-2*x^2)
-12*x*(1-(2*x^2)/3)

12*((4*x^4)/3-4*x^2+1)

-10

-5

 0

 5

 10

 0 1 2 3 4 5

FIGURE 6.2.6. Hermite polynomials

Charles Hermite (1822 – 1901) was a French mathematician who did re-
search concerning number theory, quadratic forms, invariant theory, or-
thogonal polynomials, elliptic functions, and algebra.
Hermite polynomials, Hermite interpolation, Hermite normal form, Her-
mitian operators, and cubic Hermite splines are named in his honor. One
of his students was Henri Poincaré.
He did not discover Hermite polynomialsa: Hermite polynomials were de-
fined by Pierre-Simon Laplace in 1810 and studied in detail by Pafnuty
Chebyshev in 1859. Chebyshev’s work was overlooked, and they were
named later after Charles Hermite, who wrote on the polynomials in 1864,
describing them as new.

aSee Stigler’s Law of Eponymy in the index!

EXERCISES.

2. Expand our discontinuous function, f (x), (see equation 3.1.1 on
page 32) in Hermite polynomials.

CHAPTER 7

Linear Algebra

“Life stands before me like an eternal spring with new and bril-
liant clothes.”
— Carl Friedrich Gauss.

7.1. Introduction

We assume the reader is familiar with the basic concepts of linear alge-
bra — see [40, chapter 6] as a general reference.

Initially, the focus of linear algebra was solving systems of linear equa-
tions in multiple variables. Some 4000 years ago, Babylonians were able
to solve pairs of linear equations in two unknowns. In 200BC, the Chinese
publication, “Nine Chapters of the Mathematical Art” (see [24]) showed
how to solve systems of three equations in three unknowns.

The solve-command can handle simple systems of linear equations:
Given

2x + 3y = 5

6x − y = 2(7.1.1)

where we must solve for x and y. If we type

solve ([2 * x+3*y =5 ,6* x−y = 2] , [x , y])

and Maxima replies with [[
x =

11
20

, y =
13
10

]]
Here’s another example:

x + 2y − z = 0
3x − y + 2z = 0

which we code as

solve ([x+2*y−z =0 ,3* x−y+2* z = 0] , [x , y , z])

and Maxima replies with[[
x = −3%r1

7
, y =

5%r1
7

, z = %r1
]]

Here, Maxima has introduced an auxiliary variable, %r1, that can take on
arbitrary values, showing that there are an infinite number of solutions to
this system.

99

100 7. LINEAR ALGEBRA

In 1848, Sylvester realized that an array of coefficients was all that really
mattered in these equations and coined the term “matrix” for them from
the Latin word for “mother” and “womb”.

Coding matrices in Maxima is done with the matrix-command:

a : matrix ([1 , 2 , 3] , [4 , 5 , 6] , [7 , 8 , 9])

gives 1 2 3
4 5 6
7 8 9


The usual operations ‘+’ and ‘-’ work for matrices. The multiplication-
operation, ‘∗′ multiplies them element-by-element, which is not what we
want. To correctly multiply matrices, use the ‘.’-operator.

For instance, if we type

b : matrix ([1 , 2 , − 3] , [4 , 5 , 6] , [7 , 8 , 1 0])

then

a . b

produces  30 36 39
66 81 78

102 126 117


a+b

produces  2 4 0
8 10 12

14 16 19


wxmaxima has a short-cut to entering matrices: select the menu-item

Matrix▷Enter Matrix .

NOTE 7.1.1. Matrices are always assumed to be two-dimensional, even
if they only have one row! So, if we define

a : matrix ([1 , 2 , − 3])

we access the elements with two subscripts,

a [1 , 1] , a [1 , 2] , a [1 , 3]

rather than one.
Given a matrix, one can determine how many rows it has via the length-

command:

length (b)

returns
3

7.1. INTRODUCTION 101

7.1.1. Matrix-creation commands. Besides the matrix-command, we
have several others to create matrices:

(1) the ident(n)-command creates an n × n identity matrix.
(2) the zeromatrix(m,n)-command creates an m × n matrix of zeroes.
(3) the genmatrix(ident,m,n)-command is the most powerful of the

matrix-creation commands. If ident is an identifier with no other
properties, genmatrix produces an m × n matrix with subscripted
copies of ident. For example

genmatrix (a , 3 , 4)

produces a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4


If ident is the name of a memoized function of two variables, gen-
matrix plugs row and column numbers into ident and posts the
value of the function to the array

b [i , j] : = i + j ;
genmatrix (b , 3 , 4)

produces 2 3 4 5
3 4 5 6
4 5 6 7


ident can also be an anonymous lambda-function, so

genmatrix (lambda ([i , j] , i − j) , 3 , 4)

produces 0 −1 −2 −3
1 0 −1 −2
2 1 0 −1


7.1.2. Matrix operations. The transpose-command does what you’d

expect it to do:

transpose (a)

gives 1 4 7
2 5 8
3 6 9


We will also be concerned with vectors, which we will regard as ma-

trices with a single row or, more often, a single column. The ‘.’ operation
doubles as the dot product for vectors, so

r : transpose (matrix ([1 , 2 , − 3]))

102 7. LINEAR ALGEBRA

produces  1
2
−3


and

s : transpose (matrix ([4 , 5 , 6]))

produces 4
5
6


Now

r . s

is undefined as a matrix-product, but gives the dot-product of r and s as
vectors, namely −4. Technically, the valid matrix product is

transpose (r) . s

which also produces the dot-product, −4.
We can write a simple function for the norm of a vector

norm (v) : = s q r t (v . v) ;

or, the technically more correct

norm (v) : = s q r t (transpose (v) . v) ;

Matrix-assignment, like

x : b

merely causes x to become an alias for b. Changes to x like

x [2 , 1] : − 1 0 0

will be immediately reflected in b: 1 2 −3
−100 5 6

7 8 10


If we want an independent copy of a matrix, we must use the copymatrix-
command

x : copymatrix (b)

We can easily compute integral powers of matrices too:1

a^^2

1The use of a single carat, ^, is also well defined but it raises the entries in the matrix to
powers, which is not correct.

7.1. INTRODUCTION 103

produces  30 36 42
66 81 96
102 126 150



b^^−1

produces the inverse

b−1 =

 2
15 − 44

15
9
5

2
15

31
15 − 6

5
− 1

5
2
5 − 1

5


DEFINITION 7.1.2. To analyze more complex linear systems, we sim-

plify the matrix of coefficients by performing elementary row-operations:

Type 1: subtracting a multiple of one row from another. Maxima com-
mand: rowop(M, i, j, theta) replaces row i in the matrix M by row
i - theta*row j.

Type 2: involves swapping two rows of a matrix. Maxima command:
rowswap(M,i,j) which swaps rows i and j of the matrix M.

Type 3: involves multiplying a row of a matrix by a nonzero constant.
There is no Maxima command to do this.

If the matrix consists of coefficients of a linear system, these operations
produce a system that is mathematically equivalent to the original. Our
goal is to make the matrix triangular:

DEFINITION 7.1.3. An n× n matrix, A, is called upper-triangular ifAi,j =
0 whenever i > j. The matrix, A, is lower triangular if Ai,j = 0 whenever
j > i.

REMARK. The term “upper-triangular” comes from the fact that A
looks like 

A1,1 A1,2 · · · A1,n−1 A1,n

0 A2,2
. . . A2,n−1 A2,n

0 0
. . .

...
...

...
...

. . . An−1,n−1 An−1,n
0 0 · · · 0 An,n


The process of converting a matrix to upper triangular form is called

Gaussian Elimination.

104 7. LINEAR ALGEBRA

Carl Friedrich Gauss (1777 – 1855) was a German mathematician and physi-
cist who made significant contributions to many fields in mathematics and
science. Sometimes referred to as the Princeps mathematicorum (Latin for
“the foremost of mathematicians”) and “the greatest mathematician since
antiquity”, Gauss had an exceptional influence in many fields of mathe-
matics and science, and is ranked among history’s most influential mathe-
maticians.
In surveying land around Hannover, he invented many modern surveying
instruments and the field of differential geometry. This paved the way for
Riemannian geometry and Einstein’s theory of General Relativity. He also
discovered least-squares approximations (see section 7.3.1 on page 112) for
estimating orbits of planets and asteroids given many slightly differing ob-
servations. Least squares was used to predict the future location of the
newly discovered asteroid, Ceres.
Ironically, Gauss didn’t discover Gaussian Elimination, which was first
mentioned (in Europe) by Isaac Newton. He did discover the fast Fourier
transform 160 years before its official discoverers, Cooley and Tukey. This is
a time-honored tradition in mathematics called Stigler’s law of eponymya of
naming results after people who didn’t discover them.

aTrue to itself, it was first proposed by the sociologist, Robert Merton, not Stigler ,!

Maxima has a triangularize-command to do this

t r i a n g u l a r i z e (a)

produces 1 2 3
0 −3 −6
0 0 0


The related echelon-command produces a normalized form of this matrix
with the first nonzero entry of each row set to 1. The 1 that begins each
nonzero row is called its pivot. So

echelon (a)

produces 1 2 3
0 1 2
0 0 0


where we have highlighted the pivots.

To solve a linear system, we really want a reduced echelon matrix where
we perform additional row-operations to make the pivot in each row the
only nonzero element in its column — see figure 7.1.1 on the next page.

So

reduced_echelon (a)

subtracts 2× row 2 from row 1 to produce1 0 −1
0 1 2
0 0 0



7.1. INTRODUCTION 105

/ * We must w r i t e a f u n c t i o n t o compute
r e d u c e d e c h e l o n form * /

reduced_echelon (a) : = block ([rows , co ls , k , temp] ,
[rows , c o l s] : matrix_size (a) ,
temp : echelon (a) , / * t h i s c o p i e s a * /
k : min (rows , c o l s) ,
for i thru min (rows , c o l s)

/ * Find p i v o t * /
do (i f temp [i , i]=0 then (k : i −1 , return ())) ,
/ * C l e a r out column i * /

for i : k thru 2 step −1 do
(for j from i −1 thru 1 step −1

do temp : rowop (temp , j , i , temp [j , i])) ,
temp) / * r e t u r n t h e r e s u l t * /

FIGURE 7.1.1. Code for a reduced echelon matrix

DEFINITION 7.1.4. If s = {v1, . . . , vn} are elements of Rn,their span,
Span(s) is the set of all possible linear combinations

n

∑
i=1

αivi

for αi ∈ R. It forms a subspace of Rn.

Recall that the column space of a matrix, A, is the vector space of all
vectors of the form Av for all vectors v. We have a columnspace-command
to compute this

columnspace (a)

span

1
4
7

 ,

2
5
8


Recall that the null space, Null(A), of a matrix, A, is the set of vectors, v,
such that Av = 0. This is the nullspace-command:

nullspace (a)

span

−3
6
−3


Recall that determinants are defined by

DEFINITION 7.1.5. If M is an n × n matrix, its determinant, det(M) is
defined by

(7.1.2) det(M) = ∑
σ∈Sn

℘(σ)M1,σ(1) · · · Mn,σ(n)

106 7. LINEAR ALGEBRA

where the sum is taken over all n! permutations in Sn. Here ℘(σ) is the
parity of a permutation, defined in terms of the number of inversions it pro-
duces. An inversion exists for a permutation, σ, if there is a pair of elements
x, y such that x < y and σ(x) > σ(y).

℘(σ) =

{
+1 if the total number of inversions is even
−1 otherwise

REMARK. Equation 7.1.2 on the preceding page is due to Euler. It is
not particularly suited to computation of the determinant since it is a sum
of n! terms.

DEFINITION 7.1.6. If B = ∏n
i=1[ai, bi] is a box in Rn, its volume, vol(B)

is defined by

vol(B) =
n

∏
i=1

(bi − ai)

This is used to define the Lebesgue measure:

DEFINITION 7.1.7. If R ⊂ Rn is a region, its outer Lebesgue measure is
defined by

λ(R) =

inf

{
∑

B∈C
vol(B):C is a countable set of boxes whose union covers R

}
Recall the geometric interpretation of the determinant:

THEOREM 7.1.8. If A is an n × n matrix, R ⊂ Rn, then

λ(A(R)) = |det A| · λ(R)

REMARK. So the determinant gives the effect of a linear transformation
on volumes. Analytic geometry and manifold theory considers volumes to
have signs, in which case we do not take the absolute value of the determi-
nant.

See [40] for a proof.

Maxima has a determinant-command that computes these efficiently

determinant (a)

0

determinant (b)

15
More recently, Fateman has implemented a newdet-command that is

faster than determinant but uses more memory — see [17]. If

z =

 2x − 1 37 −9
3x2 + x 2x 3x

51 2x 7


then

7.2. CHANGES OF BASIS 107

newdet (z)

produces
−66x3 − 761x2 + 6306x

EXERCISES.

1. What is the volume of the parallelepiped spanned by the three vec-
tors

v1 =

 1
5
6

 , v2 =

 2
1
3

 v3 =

 1
0
−1


?

2. What might the sign of the volume mean (when a determinant has
a negative sign)?

7.2. Changes of basis

Recall that a basis of a vector-space is like a “coordinate system” for it:
every vector can be uniquely written as a linear combination of the basis-
elements.

Suppose we have a vector-space with basis {ei}, i = 1, . . . , n and we
are given a new basis {bi}. If  x1

...
xn


is a vector in this new basis, then

x1b1 + · · ·+ xnbn =
[

b1 · · · bn
]
·

 x1
...

xn


is the same vector in the old basis, where P =

[
b1 · · · bn

]
is an n × n

matrix whose columns are the basis-vectors. Since the basis-vectors are
linearly independent, P is invertible. Since P converts from the new basis
to the old one, P−1 performs the reverse transformation.

For instance, suppose R3 has the standard basis and we have a new
basis

b1 =

 28
−25

7

 , b2 =

 8
−7
2

 , b3 =

 3
−4
1



108 7. LINEAR ALGEBRA

We form a matrix from these columns:

P =

 28 8 3
−25 −7 −4

7 2 1


whose determinant is verified to be 1. The vector 1

−1
1


in the new basis is

b1 − b2 + b3 = P

 1
−1
1

 =

 23
−36
10


If we want to convert the vector  1

2
3


in the standard basis into the new basis, we get

P−1

 1
2
3

 =

 1 −2 −11
−3 7 37
−1 0 4

 1
2
3

 =

 −36
122
11


and a simple calculation shows that

−36b1 + 122b2 + 11b3 =

 1
2
3


For matrices, changes of basis are a bit more complicated. Suppose V is

an n-dimensional vector-space and an n × n matrix, A, represents a linear
transformation

f : V → V
with respect to some basis. If {b1, . . . , bn} is a new basis for V, let

P = [b1, . . . , bn]

be the matrix whose columns are the bi. We can compute the matrix repre-
sentation of f in this new basis, Ā, via

Vold
A // Vold

P−1

��

Vnew

P

OO

Ā
// Vnew

In other words, to compute a matrix representation for f in the new basis:
(1) convert to the old basis (multiplication by P)
(2) act via the matrix A, which represents f in the old basis
(3) convert the result to the new basis (multiplication by P−1).

We summarize this with

7.3. DOT-PRODUCTS AND PROJECTIONS 109

THEOREM 7.2.1. If A is an n×n matrix representing a linear transformation

f : V → V

with respect to some basis {e1, . . . , en} and we have a new basis {b1, . . . , bn} with

P =
[

b1 · · · bn
]

then, in the new basis, the transformation f is represented by

Ā = P−1 AP

EXERCISES.

1. Solve the system of linear equations

2x + 3y + z = 8
4x + 7y + 5z = 20

−2y + 2z = 0

2. Solve the system

2x + 3y + 4z = 0
x − y − z = 0

y + 2z = 0

3. If V is a 3-dimensional vector-space with a standard basis and

b1 =

 8
4
3

 , b2 =

 −1
0
−1

 , b3 =

 2
1
1


is a new basis, convert the matrix

A =

 1 0 −1
2 1 3
−1 2 1


to the new basis.

7.3. Dot-products and projections

Dot-products have a great deal of geometric significance. We start with:

DEFINITION 7.3.1. If v ∈ Rn, define ∥v∥ =
√

v • v — the norm of v. A
unit vector u ∈ Rn is one for which ∥u∥ = 1.

THEOREM 7.3.2. Let x, y ∈ Rn be two vectors with an angle θ between them.
Then

(7.3.1) cos(θ) =
x • y

∥x∥ · ∥y∥

110 7. LINEAR ALGEBRA

u

v

Projuv

v⊥

θ

FIGURE 7.3.1. Projection of a vector onto another

PROOF. See theorem 6.2.66 in [40]. □

One immediate consequence is:

REMARK 7.3.3. Vectors u and v are perpendicular if and only if

u • v = 0

DEFINITION 7.3.4. Let u ∈ Rn be a unit vector and v ∈ Rn be some
other vector. Define the projection of v onto u via

Projuv = (u • v)u

Also define
v⊥ = v − Projuv

REMARK. Note that Projuv is parallel to u with a length of ∥v∥ · cos θ,
where θ is the angle between u and v. Also note that

u • v⊥ = u • (v − (u • v)u)

= u • v − (u • v)u • u
= u • v − u • v = 0

so v⊥ is perpendicular to u as per remark 7.3.3.
Since v = Projuv + v⊥, we have represented v as a sum of a vector

parallel to u and one perpendicular to it. See figure 7.3.1.

We can generalize projection to multiple dimensions:

DEFINITION 7.3.5. Let u1, . . . , uk ∈ Rn be a set of vectors. This set is
defined to be orthonormal if

(7.3.2) ui • uj =

{
1 if i = j
0 otherwise

As with a single vector, we can define projections in this case.

DEFINITION 7.3.6. If V is an inner-product space, v ∈ V, and S =
{u1, . . . , uk} is an orthonormal set of vectors with W = Span(S), then de-
fine

ProjWv =
k

∑
i=1

(ui • v) ui

If v /∈ W, what is the relation between v and ProjWv?

7.3. DOT-PRODUCTS AND PROJECTIONS 111

PROPOSITION 7.3.7. If S = {u1, . . . , uk} is an orthonormal set of vectors
that span W ⊂ Rn, and v is any other vector, then

v⊥ = v − ProjWv

has the property that v⊥ • uj = 0 for all j = 1, . . . , k, making it perpendicular to
all of W. It follows that ProjWv is the vector in W closest to v in the sense that

∥v − w∥ > ∥v − ProjWv∥
for any w ∈ W with w ̸= ProjWv.

PROOF. See proposition 6.2.88 in [40]. □

Maxima has a library called eigen that adds additional functions to the
system. For instance:

load (" eigen ") ;
x : matrix ([1 , 2 , 3]) ;
u n i t v e c t o r (x) ;

results in (
1√
14

2√
14

3√
14

)
so it returns

x
∥x∥

EXERCISES.

1. Compute the angle between the vectors 1
2
3

 and

 1
−2
0


2. Consider the unit vector

u =

 1/
√

3
1/

√
3

1/
√

3


If

v =

 1
2
3


compute Projuv and v⊥. Write Maxima functions to do this.

3. Given vectors

v1 =


1
2
3
4

 , v2 =


1
0
−1
1

 , v3 =


2
−1
−2
−1



112 7. LINEAR ALGEBRA

in R4, find an orthonormal set {u1, u2, u3} with

Span{u1, u2, u3} = Span{v1, v2, v3}
Hint: u1 = v1/∥v1∥. Now project v2onto u1, compute (v2)⊥, and make

that into a unit vector, etc. This process is called the Gram-Schmidt Algo-
rithm. The eigen library has a gramschmidt-command that almost carries
this out.

7.3.1. Linear least squares. Suppose we are given a collection of data
{(x1, y1), . . . , (xn, yn)} and would like to find a function f (x) such that
f (xi) = yi. Or, failing this, we would like to find a function that fits this
data “as closely as possible”. What do we mean by this?

Least squares tries to find a function that minimizes
n

∑
i=1

(f (xi)− yi)
2

as in figure 7.3.2 on the next page.
We will begin with the simplest case: f (x) = c1x + c0. We get a vector

D =


c1x1 + c0 − y1
c1x2 + c0 − y2

...
c1xt−1 + c0 − yt−1

c1xt + c0 − yt

 =


x1 1
x2 1
...

...
xt−1 1

xt 1


[

c1
c0

]
−


y1
y2
...

yt−1
yt


or

D = XC − Y

where

X =


x1 1
x2 1
...

...
xt−1 1

xt 1

 , C =

[
c1
c0

]

and

Y =


y1
y2
...

yt−1
yt


We want to minimize ∥D∥2 = DtD. We get

(XC − Y)t (XC − Y) = (CtXt − Yt)(XC − Y)

= CtXtXC − CtXtY − YtXC + YtY

7.3. DOT-PRODUCTS AND PROJECTIONS 113

FIGURE 7.3.2. Least squares fit

Now we differentiate by the ci (i.e.form the gradient) and set it to zero, to
get

2XtXC − 2XtY = 0

since CtXtY = YtXC (why?2).
Our least-squares problem becomes

(7.3.3) XtXC = XtY

This simple (i.e., degree-1) case is often used in the business world, where
it’s called linear regression. It shows whether random-appearing data is (on
the average) trending upward or downward.

Incidentally, equation 7.3.3 will be used in much more complex exam-
ples of least-squares fits; only the definition of X will change.

EXAMPLE 7.3.8. Suppose

Y =


1.827619199225791

0.3903692355955774
0.9647810497032392
0.7108801143185723
0.5044777533707618


and xi = i

X =


1 1
2 1
3 1
4 1
5 1


then equation 7.3.3 is[

55 15
15 5

] [
c1
c0

]
=

[
10.86861004365476
4.398127352213942

]
2They’re both scalars!

114 7. LINEAR ALGEBRA

x

Data

Trend line

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

FIGURE 7.3.3. Linear regression

from which we get

[
c1
c0

]
=

[
−0.2325772012987064

1.577357074338908

]

or

y ∼ x · (−0.2325772012987064) + 1.577357074338908

so the data is trending downwards. We can plot it with

plot2d ([[discre te , [[1 , y [1 , 1]] , [2 , y [2 , 1]] , [3 , y [3 , 1]] ,
[4 , y [4 , 1]] , [5 , y [5 , 1]]]] ,
x * (−0 .2325772012987064)+1 .577357074338908] ,

[x , 1 , 5] , [s tyle , [points , 4 , 7 , 1] , [l ines , 2 , 1]] ,
[legend , " Data " , " Trend l i n e "]) ;

to get figure 7.3.3.

Incidentally, the [style ,[points ,4,7,1],[lines ,2,1]] trailing the
rest of the plot-specifications gives the respective styles of the two
function-plots. These always follow the other options. The specification
[points ,4,7,1] specifies that the first plot is disconnected points (the default
is to connect the points with lines). The specification takes the form
[points,diameter,type_of_point,color]. See table F.1.1 on page 255 in
appendix F on page 251 for the codes.

Now we’ll look at a more complex example: finding a fourth-degree
polynomial that is a “formula” for the first 10 prime numbers.

7.3. DOT-PRODUCTS AND PROJECTIONS 115

EXAMPLE 7.3.9. In this case

Y =



2
3
5
7
11
13
17
19
23
29


and, since we’re approximating these by f (x) = c4x4 + c3x3 + c2x2 + c1x +
c0 with xi = i for i = 1, . . . , 10, we get Xi,j = i5−j and use the command

X : genmatrix (lambda ([i , j] , i ^(5− j)) , 1 0 , 5)

to get

X =



1 1 1 1 1
16 8 4 2 1
81 27 9 3 1

256 64 16 4 1
625 125 25 5 1
1296 216 36 6 1
2401 343 49 7 1
4096 512 64 8 1
6561 729 81 9 1

10000 1000 100 10 1


so XtX is 

167731333 18080425 1978405 220825 25333
18080425 1978405 220825 25333 3025
1978405 220825 25333 3025 385
220825 25333 3025 385 55
25333 3025 385 55 10


and XtY is 

585514
66118
7726
952
129


and C is given by

(XtX)−1(XtY) = C =


41

3432
− 147

572
6869
3432
− 542

143
25
6



116 7. LINEAR ALGEBRA

x

Primes
Least squares

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

FIGURE 7.3.4. “Formula” for prime numbers

so that our “formula” for the prime numbers is

41 ·x4

3432
− 147 ·x3

572
+

6869 ·x2

3432
− 542 ·x

143
+

25
6

and figure 7.3.4 shows a comparison plot.
In the most general form of linear least squares, we approximate data

via a formula

f (x) =
n

∑
i=1

cigi(x)

where the gj are some functions (not necessarily powers of x), and Xi,j =

gj(xi). In our examples above, the gj(x) were xj.

EXERCISES.

4. Find a fifth degree polynomial that least-squares approximates the
first 20 prime numbers, which are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

7.4. Eigenvalues and the characteristic polynomial

Suppose V is a vector space and A: V → V is a linear transformation.
Recall how eigenvalues and eigenvectors are defined in terms of each other

(7.4.1) Av = λv

where we require v ̸= 0 and λ to be a scalar. A nonzero vector, v, satisfying
this equation is called an eigenvector of A and the value of λ that makes this
work is called the corresponding eigenvalue.

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 117

Eigenvectors and eigenvalues are defined in terms of each other, but
eigenvalues are computed first.

We rewrite equation 7.4.1 on the facing page as

Av = λIv

where I is the suitable identity matrix and get

(A − λI)v = 0

This must have solutions for nonzero vectors, v. This can only happen if

det(A − λI) = 0

DEFINITION 7.4.1. If A is an n × n matrix

det(λI − A) = χA(λ)

is a degree-n polynomial called the characteristic polynomial of A. Its roots
are the eigenvalues of A. Maxima has a charpoly-command

EXAMPLE 7.4.2. If type

b : matrix ([1 , 2 , 3 , 4] , [5 , 6 , 7 , 8] , [7 , 8 , 9 , 1 0] , [1 1 , 1 2 , 1 3 , 1 4]) ;

to get 
1 2 3 4
5 6 7 8
7 8 9 10

11 12 13 14


Its characteristic polynomial is computed by the charpoly-command

charpoly (b , x)

The first parameter is the matrix, and the second is the variable to appear
in the polynomial. This generally gives a messy output expression that can
be simplified by the expand-command to get

χb(x) = x4 − 30x3 − 64x2

with roots (eigenvalues of b) that can be computed directly (i.e., without first
issuing the charpoly-command) by the eigenvalues-command which has
a shorter abbreviation, eivals

eigenvalues (b)

to get

[[−2, 32,0] , [1,1,2]]

These two lists give, respectively, the eigenvalues themselves, and their
corresponding multiplicities. So our eigenvalues are 0,−2, 32 with multi-
plicities 2, 1, 1, respectively.

118 7. LINEAR ALGEBRA

The eigenvectors are computed by the eigenvectors-command which
finds the eigenvalues and then the corresponding eigenvectors3

[[[−2, 32, 0] , [1, 1, 2]] ,[[[
1,

3
11

,− 1
11

,− 9
11

]]
,
[[

1,
7
3

, 3,
13
3

]]
, [[1, 0,−3, 2] , [0, 1,−2, 1]]

]
This output consists of a list of

(1) Eigenvalues and multiplicities (identical to the output of the
eigenvalues-command),

(2) For each eigenvalue, a list of the corresponding eigenvectors
(there might be more than one). In this example, the eigenvalue
0 has two linearly independent eigenvectors. These vectors are
listed as row-vectors rather than the column-vectors used in
section 7.2 on page 107.

We will try to do what was done in section 7.2 on page 107 using the matrix
b. We cut and paste the eigenvectors computed earlier into a matrix

First, we type

pt : matrix ([1 ,3/11 , −1/11 , −9/11] , [1 ,7/3 ,3 ,13/3] ,
[1 , 0 , − 3 , 2] , [0 , 1 , − 2 , 1]) ;

to get 
1 3

11 − 1
11 − 9

11
1 7

3 3 13
3

1 0 −3 2
0 1 −2 1


Since this has row vectors rather than the column vectors we want, we use
the transpose-command

p : transpose (pt)

to get

p =


1 1 1 0
3
11

7
3 0 1

− 1
11 3 −3 −2

− 9
11

13
3 2 1


Now we are ready to play!

d : (p^^ −1).b . p

gives

d =


−2 0 0 0
0 32 0 0
0 0 0 0
0 0 0 0


so the matrix b simply multiplies the first basis-vector by −2, the second
by 32, and kills the remaining basis vectors.

3It isn’t necessary to issue the charpoly command or the eigenvalues command first.

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 119

The expression

p . d . (p^^−1)

recovers our original b-matrix.
Since diagonal matrices behave like scalars

dn =


(−2)n 0 0 0

0 32n 0 0
0 0 0 0
0 0 0 0


for n > 0. We can get a closed form of the nth power of b by writing

p . d^n . (p^^−1)

(here, we’re using the fact that a single carat simply raises each element of
the matrix to a power) to get a closed form expression for bn:

11 ·(−2)n

17 + 39 ·32n−1

17
45 ·32n−1

17 − 11 ·(−2)n−1

17 3 ·32n−1 57 ·32n−1

17 +
11 ·(−2)n−1

17
3 ·(−2)n

17 + 91 ·32n−1

17
105 ·32n−1

17 − 3 ·(−2)n−1

17 7 ·32n−1 133 ·32n−1

17 +
3 ·(−2)n−1

17
117 ·32n−1

17 − (−2)n

17
135 ·32n−1

17 + (−2)n−1

17 9 ·32n−1 171 ·32n−1

17 − (−2)n−1

17
169 ·32n−1

17 − 9 ·(−2)n

17
195 ·32n−1

17 +
9 ·(−2)n−1

17 13 ·32n−1 247 ·32n−1

17 − 9 ·(−2)n−1

17


which we can ratsimp to
39 ·32n−11 ·(−2)n+5

544
11 ·(−2)n+4+45 ·32n

544 3 ·32n−1 57 ·32n−11 ·(−2)n+4

544
91 ·32n−3 ·(−2)n+5

544
3 ·(−2)n+4+105 ·32n

544 7 ·32n−1 133 ·32n−3 ·(−2)n+4

544
(−2)n+5+117 ·32n

544
135 ·32n−(−2)n+4

544 9 ·32n−1 (−2)n+4+171 ·32n

544
9 ·(−2)n+5+169 ·32n

544
195 ·32n−9 ·(−2)n+4

544 13 ·32n−1 9 ·(−2)n+4+247 ·32n

544


The reader might wonder why we are interested in eigenvalues and

eigenvectors. The answer is simple:
Equation 7.4.1 on page 116 shows that A behaves like a
scalar when it acts on an eigenvector.

If we could find a basis for our vector space of eigenvectors, A would become
a diagonal matrix in that basis — because it merely multiplies each basis-
vector by a scalar.

EXAMPLE 7.4.3. It is also possible for eigenvectors to not span a vector
space. Consider the matrix

B =

[
1 1
0 1

]
This has a single eigenvalue, λ = 1, and its eigenspace is one-dimensional,
spanned by [

1
0

]
so there doesn’t exist a basis of R2 of eigenvectors of B. All matrices (even
those like B above) have a standardized form that is “almost” diagonal
called Jordan Canonical Form.

120 7. LINEAR ALGEBRA

We conclude this section with (see [40, chapter 6] for a proof):

THEOREM 7.4.4 (Cayley-Hamilton). If A is an n × n matrix with charac-
teristic polynomial

χA(λ)

then χA(A) = 0.

REMARK. In other words, every matrix “satisfies” its characteristic
polynomial.

The Cayley-Hamilton Theorem can be useful in computing powers of
a matrix. For instance, if the characteristic polynomial of a matrix, A, is
λ2 − 5λ + 3, we know that

A2 = 5A − 3I

so all integer powers of A will be linear combinations of A and I. Since A
is invertible

A = 5I − 3A−1

or

A−1 =
1
3
(5I − A)

This can also be used to calculate other functions of a matrix. If

f (X)

is a high-order polynomial or even an infinite series, write

f (X) = χA(X) · g(X) + r(X)

where r(X) is the remainder with deg r(X) < deg χA(X) and

f (A) = r(A)

This also one of the reasons we have a charpoly-command in Maxima:
sometimes the characteristic polynomial is useful in its own right and not
only as a way to compute eigenvalues.

Sir William Rowan Hamilton, (1805 – 1865) was an Irish physicist, as-
tronomer, and mathematician who made major contributions to mathemat-
ical physics (some had applications to quantum mechanics), optics, and al-
gebra. He invented quaternions, a generalization of the complex numbers
(see [40, chapter 9]).

EXERCISES.

1. If

A =

 −9 2 −3
8 1 2
44 −8 14


compute a closed form expression for An.

2. Compute a square root of the matrix, A.

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 121

3. Generate a 10 × 10 matrix whose entries are the row minus the col-
umn. Find its eigenvalues.

4. Consider two sequences recursively defined by

an+1 = 2an + 2bn

bn+1 = kan + 7bn

with a0 = 1 and b0 = 0. Hows do you choose the real number, k, so that

lim
n→∞

an+1

an
= 5

? In this case, find

lim
n→∞

bn+1

an

7.4.1. Population dynamics. We will use linear algebra to study age-
distributions of populations. Suppose we have a population of organisms
that has a maximum lifespan of k years (or units of time that might not
be years). Let ni ≥ 0 denote the number of creatures alive at year i, let
0 ≤ si ≤ 1 be the fraction of creatures that survive from year i to year i + 1,
and let 0 ≤ fi be the average number of offspring creatures at age i have.

We have what is called the Leslie Matrix, describing the dynamics of
this system (see [28])

 n0
...

nk−1


t+1

=



f0 · · · · · · · · · fk−1

s0 0 · · · . . . 0
0 s1 0 · · · 0
...

.
...

0 · · · 0 sk−2 0


 n0

...
nk−1


t

or
Nt+1 = TNt

We are interested in
(1) Ratios between the various age groups, when the population sta-

bilizes,
(2) How fast it grows after this stabilization.

The population’s age-ratios will have stabilized when

Nt+1 = λNt

for some scalar, λ — i.e., when Nt is an eigenvector of T. The corresponding
eigenvalue, λ, shows how rapidly the overall population grows or shrinks.

Let’s do an example.

EXAMPLE 7.4.5. A study of tribbles on planet ceti-alpha-6 shows that
their Leslie Matrix is

122 7. LINEAR ALGEBRA

T =


0 1 3 1 0

0.9 0 0 0 0
0 0.6 0 0 0
0 0 0.5 0 0
0 0 0 0.3 0


We dutifully type

eigenvalues (T)

and get a lengthy string of square roots and other radicals. Typing bfloat(%)
gives

[[(−7 .693353249757961 b−1 %i) −6.381300992460435b−1 ,
7 .693353249757961b−1 %i − 6.381300992460435b−1 ,
−1.84947536902627b−1 , 1 .461207735394714 b0 , 0 . 0 b0] ,
[1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0]]

If we ask for eigenvectors, Maxima pauses for a long time and finally reports
that there aren’t any!

What has gone wrong?
Consider the eigenvalue 1.461207735394714.
The nullspace of

U: T−1.461207735394714* ident (5)

should be the eigenvector associated with this eigenvalue. If we type

nullspace (U)

Maxima comes back with

[?]

What has happened? Is Maxima broken? For U to have a nullspace, its
determinant must vanish. The command

determinant (U)

gives

(7.4.2) 1.110223024625157 · 10−16

which is very small but not zero. This illustrates the strength and weakness
of Maxima: it insists on exact arithmetic. The number 1.461207735394714 is
very close to an eigenvalue but not exactly equal to one4. We need a linear
algebra system that can work with non-exact arithmetic.

Luckily, there’s a library of linear algebra routines that will treat num-
bers like that in equation 7.4.2 as zero. We load it with the command

load (" lapack ")

One command that is available is

4It can’t possibly be; the actual eigenvalue is irrational.

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 123

dgeev (t , u , f) ;

where t is a square matrix of real numbers and u and f are truth-values (they
default to ‘false’ if omitted). The output is the set of eigenvalues and their
multiplicities. If u is not false, it outputs an array of right-eigenvectors, i.e.

tv = λv

If f is not false, it also outputs left eigenvectors

vHt = λvH

where vH is the conjugate-transpose of v. All we want are right eigenvec-
tors, so we type

dgeev (t , true , f a l s e) ;

and get a list of eigenvalues

0
1.461207735394714

0.7693353249757966 · i − 0.6381300992460446
−0.7693353249757966 · i − 0.6381300992460446

−0.1849475369026271

and a huge 5 × 5 array whose columns are corresponding eigenvectors.
The only positive real eigenvalue is 1.461207735394714, so we

pick that. Its corresponding eigenvector is the second column of the
eigenvector-matrix: 

0.8301290523484829
0.5113004325232492
0.2099497915887227

0.07184118537806998
0.01474968622965787


We normalize this to sum up to 1 (how is this done?) and get

(7.4.3)


0.5068035295561001
0.3121549151101902
0.1281768119134142

0.04385988686228456
0.009004856558010907


so this is the population-distribution of tribbles when it stabilizes.

In each time unit, the population is multiplied by the eigenvalue
1.461207735394714, so tribbles multiply rapidly5.

In general, there’s nothing wrong with Maxima’s exact computations
(and a lot that is right). In dealing with approximate data and purely nu-
meric computations, the lapack library may be advantageous.

That library contains a number of other routines:

5As anyone who has seen the old Star Trek episode, The Trouble with Tribbles, knows!

124 7. LINEAR ALGEBRA

dgeqrf(A) Computes the QR decomposition of the matrix A: A = QR,
where Q is a square orthonormal6 matrix with the same number
of rows as A and R is an upper-triangular matrix.

dgesv(A,b) Solves the linear algebra problem Ax = b, where A and b are
made up of real, floating point numbers.

� dgemm(A,B) dgemm (A, B, options) Compute the product of two
matrices and optionally add the product to a third matrix.

In the simplest form, dgemm(A, B) computes the product of
the two real matrices, A and B.

In the second form, dgemm computes the alpha * A * B + beta
* C where A, B, C are real matrices of the appropriate sizes and
alpha and beta are real numbers. Optionally, A and/or B can be
transposed before computing the product. The extra parameters
are specified by optional keyword arguments: The keyword argu-
ments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:
C The matrix C that should be added. The default is

false, which means no matrix is added.
alpha The product of A and B is multiplied by this value. The

default is 1.
beta If a matrix C is given, this value multiplies C before

it is added. The default value is 0, which implies that
C is not added, even if C is given. Hence, be sure to
specify a non-zero value for beta.

transpose_a If true, the transpose of A is used instead of A for the
product. The default is false.

transpose_b If true, the transpose of B is used instead of B for the
product. The default is false.

zgeev(A) zgeev (A, right_p, left_p) Like dgeev, but the matrix A is com-
plex.

zheev(A) zheev(A, eigvec_p) Like zgeev, but the matrix A is assumed to
be a square complex Hermitian matrix. If eigvec_p is true, then
the eigenvectors of the matrix are also computed.

No check is made that the matrix A is, in fact, Hermitian.
A list of two items is returned, as in dgeev: a list of eigen-

values, and false or the matrix of the eigenvectors.

EXERCISES.

5. Write a function that takes a vector (representing the initial number
of tribbles available in each age-group) and an integer n that returns the
population-distribution of tribbles in time-unit n. How fast does this con-
verge to the stable distribution in equation 7.4.3 on the previous page? Is
there an initial distribution that doesn’t converge to the stable distribution?

6If C and C′ are any two distinct columns of the matrix, then C · C = 1 and C · C′ = 0.

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 125

1

2

3

4

8

5

67

9 10

FIGURE 7.4.1. A sample web

7.4.2. The 25-billion-dollar eigenvector7. Although several search en-
gines predated Google (Yahoo, etc.), Google distinguished itself by the qual-
ity of its results. It seemed to find the most relevant web pages so one did
not have to wade through countless links to find interesting information.
This largely due to Google’s Page rank algorithm, which manages to pick out
these web pages.

This raises a question:

How can one determine relevance in any search? Doesn’t
it depend on the subject matter?

Google solved this problem by counting the number of pages that link to a
given web page, i.e. the number of back-links the page possesses: the more
back-links, the more people are interested in the page — regardless of the
subject-matter. See the groundbreaking paper [6].

Consider the web in figure 7.4.1.
If xi is the importance of node i, then back-link-counts gives us
� x1 = x9 = x10 = 0
� x2 = x4 = x5 = x6 = x7 = 1
� x8 = 4
� x3 = 6

so the most important node is 3.

7This is the approximate value of Google when the company went public in 2004. This
section of the book uses material from the excellent paper, [7].

126 7. LINEAR ALGEBRA

On the other hand, we should take into account the importance of a page
that links to another so we get equations like

� x3 = x2 + x4 + x9 + x10
� x2 = x1, x4 = x1
� etc.

Another consideration is the number of outgoing links a page has: the more
of these, the greater the page’s influence on the whole process. We remedy
that by normalizing the effect of the links: each link of a page that has n
outgoing links gets a weight of 1/n. Every web page has the same effect on
the final result.

If page k has nk outgoing links, then the equations above are rewritten
as

(7.4.4) xi = ∑
k∈Bi

xk
nk

where Bi is the set of back-links of page i. We can enter this data into an
n × n matrix, L, called the link matrix, where

Li,j =

{
0 if there’s no link from page j to page i
1/nj if there’s a link from page j to page i

For instance, the graph in figure 7.4.1 on the previous page has a link matrix
of

(7.4.5) L =



0 0 0 0 0 0 0 .5 0 0
.25 0 0 0 0 0 0 0 0 0
.25 .5 0 1 0 1 0 0 1 1
.25 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 .5 0 0
0 0 0 0 .5 0 0 0 0 0
0 0 0 0 .5 0 0 0 0 0

.25 .5 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


and if X is a 10 × 1 matrix (i.e., vector) of the importance-values, then

LX = X

i.e., plugging the values into the right side of equations 7.4.4 should give
the importance-values back. In other words, X is an eigenvector of L with
eigenvalue 1. The matrix, L has two properties

(1) All of its entries are nonnegative,
(2) Its columns all sum up to 1.

These properties make it what is called a column-stochastic matrix. This
turns out to guarantee that it has 1 as an eigenvalue.

Typing

eigenvalues (L) ;

7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 127

gives an incredibly messy answer, but shows that L does have an eigen-
value of 1. Typing

eigenvectors (L) ;

causes Maxima to complain that it cannot compute the first four eigenvec-
tors8, but the one corresponding to the eigenvalue 1 is

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]t

showing that the most important page is number 4, a surprising result!
If we

load (" lapack ")

and type

dgeev (L , true , f a l s e) ;

we get a similar numeric result.
In the example above, the eigenspace corresponding to the eigenvalue

1 was one-dimensional, so we got a unique ranking. Suppose we had r
disjoint sub-webs of our original web. In this case, our link-matrix would
look like

L =

D1 · · · 0
...

. . .
...

0 · · · Dr


where Di is the link-matrix of the ith sub-web. Each of these sub-webs
will have a ranking independent of the others so that the eigenspace of
L corresponding to the eigenvalue 1 will be r-dimensional. If we compute
this eigenspace we get r vectors that span it, not necessarily the rank vectors
of the sub-webs (which will be some linear combination of those r vectors).

Google solved this problem by “slightly connecting” the sub-webs to-
gether. Let the total number of web-pages be n and let S be an n × n matri-
ces whose entries are all 1/n. Then form

(7.4.6) M = (1 − c)L + cS

where c is some small number. Google initially used c = .15. The resulting
M matrix will still be column-stochastic but will have a one-dimensional
eigenspace for the eigenvalue 1.

Although Google has enormous computing power at its disposal, it is
certainly unable to process billion-by-billion matrices in the usual fashion
(in finding eigenvalues and eigenvectors, for instance). Google uses the
power method to compute the eigenvector corresponding to the eigenvalue
1.

Very crudely (!), the idea is

MM∞X = M∞+1X =M∞X

8Because it’s trying to find exact values, solving degree-10 polynomials.

128 7. LINEAR ALGEBRA

where X is a “typical” nonzero vector. We start with some nonzero vector
X0 and define

Xk+1 = MXk

and hope this converges to the actual eigenvector, X̄ as k → ∞. We also
normalize Xk+1 so it doesn’t grow or shrink in this process: If v is an n-
dimensional vector with components {vi}, define

∥v∥1 =
n

∑
i=1

|vi|

and our iterative process is

(7.4.7) Xk+1 =
MXk

∥MXk∥1

See [43] for an analysis of when this type of process converges.
Here’s an interpretation of taking powers of the original link matrix, L:(

L2
)

i,j
> 0

if and only if there a path of length ≤ 2 that connects node j to node i. Why?(
L2
)

i,j
=

n

∑
k=1

Li,kLk,j

and this is > 0 if both Li,k and Lk,j are > 0 for at least one value of k. A
simple induction shows that

(Lr)i,j > 0

if and only if there’s a path of length ≤ r connecting j to i. So:

Taking powers of the L-matrix is similar to randomly surf-
ing the web and counting how many times we reach each
page. The more often we reach a page, the more important
that page is. The initial vector X0 represents the starting
position of this random walk.

EXERCISES.

6. Write a Maxima function to implement the iteration used in the
power method (equation 7.4.7). Test it using the link matrix, L, in equa-
tion 7.4.5 on page 126 converted to M via equation 7.4.6 on the previous
page with c = .15. Does it converge?

Compare this with the actual eigenvector, computed via dgeev.

7.5. FUNCTIONS OF MATRICES 129

7.5. Functions of matrices

If M is a matrix, we can plug it into power series to compute functions
like eM or sin M and cos M.

If a matrix can be diagonalized, it’s easy to compute functions like
these. Consider the matrix

E =


1 2 3 4
5 6 7 8
7 8 9 10

11 12 13 14


from section 7.4 on page 116. We know that E can be diagonalized to

d =


−2 0 0 0
0 32 0 0
0 0 0 0
0 0 0 0


where E=p.d.(p^^-1) and

p =


1 1 1 0
3

11
7
3 0 1

− 1
11 3 −3 −2

− 9
11

13
3 2 1


Then

ed =


e−2 0 0 0
0 e32 0 0
0 0 1 0
0 0 0 1


eE = p.ed.p^^-1

giving


e−2(39e34+153e2+352)

544
e−2(45e34−221e2+176)

544
3e32−3

32
e−2(57e34+119e2−176)

544
e−2(91e34−187e2+96)

544
e−2(105e34+391e2+48)

544
7e32−7

32
e−2(133e34−85e2−48)

544
e−2(117e34−85e2−32)

544
e−2(135e34−119e2−16)

544
9e32+23

32
e−2(171e34−187e2+16)

544
e−2(169e34+119e2−288)

544
e−2(195e34−51e2−144)

544
13e32−13

32
e−2(247e34+153e2+144)

544


The exponential is so important that Maxima has a command to pro-

duce it, namely the matrixexp-command.
Its format is

matrixexp (thematrix , opt iona l s c a l a r m u l t i p l i e r) ;

If the scalar multiplier is omitted, it is assumed to be 1. The reason for this
multiplier will become clear momentarily.

Suppose we have a system of differential equations
dx
dt

= 3x − 4y

dy
dt

= 2x − y

130 7. LINEAR ALGEBRA

written more compactly as
dv
dt

= Mv

where

v =

[
x
y

]
and

M =

[
3 −4
2 −1

]
The well-known solution is[

x
y

]
= et·M ·

[
x(0)
y(0)

]
If you differentiate the power-series for et·M with respect to t, you get
Met·M. Typing

m: matrix ([3 , − 4] , [2 , − 1])
matrixexp (m, t) ;

results in−%e−2 ·%i ·t ·
(
(%i−1) ·%e4 ·%i ·t+t+(−%i−1) ·%et

)
2 %e−2 ·%i ·t ·

(
%i ·%e4 ·%i ·t+t − %i ·%et

)
−

%e−2 ·%i ·t ·
(

%i ·%e4 ·%i ·t+t−%i ·%et
)

2
%e−2 ·%i ·t ·

(
(%i+1) ·%e4 ·%i ·t+t+(1−%i) ·%et

)
2


Since the original problem didn’t include any imaginary numbers, it’s

safe to assume we should convert these imaginary exponentials to sines
and cosines.

The demoivre-command replaces all occurrences of eix by cos(x) +
i sin(x):

demoivre (%)

but applying it as once might not be the best approach. A few experimental
sequences of commands shows that

expand (%) ;
demoivre (%) ;
trigsimp (%) ;

provides the simplest result:[
%et · sin (2 ·t) + %et · cos (2 ·t) −2 ·%et · sin (2 ·t)

%et · sin (2 ·t) %et · cos (2 ·t)− %et · sin (2 ·t)

]
Here, the trigsimp-command can be used to simplify some

trigonometric expressions. Alternatively, we could have applied the
realpart-command to the matrix.

Other trigonometric commands are trigreduce and trigrat.
Note: the opposite of demoivre is the exponentialize-command which

converts trigonometric functions into their exponential form.

7.5. FUNCTIONS OF MATRICES 131

EXERCISES.

1. Find the sine and cosine of the matrix[
1 2
3 4

]
Hint: use De Moivre’s formula and use the realpart and imagpart com-
mands.

2. If x is a scalar variable, compute

x

[
1 2
3 4

]

7.5.1. Affine groups and motions in space. In this section we will an-
alyze groups that originate in geometry — groups of symmetries and mo-
tions.

To understand the geometry of Rn, it is not enough to simply be able
to rotate space about a fixed point (namely, the origin — which matrix-
operations do). We must also be able to move objects through space, to
displace them. This leads to the affine groups.

Regard Rn as the plane xn+1 = 1 in Rn+1. An (n + 1)× (n + 1) matrix
of the form

(7.5.1) D(a1, . . . , an) =



1 0 · · · 0 a1

0 1
. . .

...
...

...
. 0 an−1

...
. . . 0 1 an

0 · · · · · · 0 1


preserves this imbedded copy of Rn and displaces it so that the origin is
moved to the point (a1, . . . , an). A simple calculation shows that

D(a1, . . . , an) · D(b1, . . . , bn) = D(a1 + b1, . . . , an + bn)

which implies that the matrices of the form D(a1, . . . , an) ∈ GL(n, R) form
a subgroup, S ⊂ GL(n + 1, R) isomorphic to Rn.

DEFINITION 7.5.1. If n > 0 is an integer and G ⊂ GL(n, F) is a sub-
group, the subgroup of GL(n + 1, F) generated by matrices

M =

[
g 0
0 1

]
for g ∈ G and matrices of the form D(a1, . . . , an) with the ai ∈ F is called
the affine group associated to G and denoted Aff(G).

Recall that

DEFINITION 7.5.2. An n × n matrix, A will be called orthogonal if

AAt = I

132 7. LINEAR ALGEBRA

REMARK. Recall the properties of orthogonal matrices (as always, see
[40])

(1) They form a group, O(n),called the orthogonal group,
(2) if A is an orthogonal matrix, then det A = ±1. If det A = 1, A will

be called special orthogonal.
(3) An orthogonal matrix, A, as a linear transformation A: Rn → Rn

preserves angles between vectors and lengths of vectors. In other
words, the matrices in O(n) represent rotations and reflections.
The group SO(n, R) eliminates the reflections.

Recall that if we want to represent rotation in R2 via an angle of θ in
the counterclockwise direction, we can use a matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
: R2 → R2

Regard R2 as the subspace, z = 1, of R3. The linear transformation

(7.5.2) f =

 cos(θ) − sin(θ) a
sin(θ) cos(θ) b

0 0 1

 : R3 → R3

in Aff(SO(2, R)) sends  x
y
1

 ∈ R2 ⊂ R3

to  x cos(θ)− y sin(θ) + a
x sin(θ) + y cos(θ) + b

1

 ∈ R2 ⊂ R3

and represents
(1) rotation by θ (in a counterclockwise direction), followed by
(2) displacement by (a, b).

Affine group-actions are used heavily in computer graphics: creating a
scene in R3 is done by creating objects at the origin of R3 ⊂ R4 and moving
them into position (and rotating them) via linear transformations in R4. A
high-end (and not so high end) computer graphics card performs millions
of affine group-operations per second.

7.6. Linear Programming

7.6.1. Introduction. We will discuss an application of linear algebra to
a widely used industrial function.

Here’s an example of a linear programming problem:

EXAMPLE 7.6.1. A calculator company produces a scientific calculator
and a graphing calculator. Long-term projections indicate an expected de-
mand of at least 100 scientific and 80 graphing calculators each day.

(1) Because of limitations on production capacity, no more than 200
scientific and 170 graphing calculators can be made daily.

7.6. LINEAR PROGRAMMING 133

g

s

 80

 100

 120

 140

 160

 180

 100 120 140 160 180 200

FIGURE 7.6.1. Feasible region

(2) To satisfy a shipping contract, a total of at least 200 calculators
much be shipped each day.

(3) If each scientific calculator sold results in a $2 loss, but each graph-
ing calculator produces a $5 profit, how many of each type should
be made daily to maximize net profits?

Let s denote the number of scientific calculators and g the number of graph-
ing calculators produced each day.

The word problem translates into a series of inequalities

s + g ≥ 200
s ≤ 200
g ≤ 170
s ≥ 100
g ≥ 80

And we must maximize P = −2s + 5g, which is called the objective function
of the problem. The inequalities define a polygonal region with 5 vertices as
in figure on the current page. Points that satisfy the inequalities are called
feasible solutions, and the set of them is called the feasible region. They don’t
necessarily solve the problem (maximize profits) but are potential solutions.

The line on the lower right of figure on this page is the profit-line, P =
−2s + 5g = 100. It may be translated parallel to itself, and we arrive at the
solution to the problem in figure on the next page, with a profit of 650.

Several things stand out:
The objective function is linear, so we can’t find its extrema by setting its

derivatives to 0. To see what happens, consider the function f (x) = 2x − 1
on the closed interval [1, 5]. Its derivative never vanishes, but its maximum
occurs at x = 5. In greater generality, the extrema occur at critical points
(where derivatives vanish) or on the boundary of the region.

134 7. LINEAR ALGEBRA

g

s

Solution

 80

 100

 120

 140

 160

 180

 100 120 140 160 180 200

FIGURE 7.6.2. Linear programming solution

Induction shows that the extrema of an objective function occur at the
vertices (i.e., boundary of the boundary of the. . .) of the feasible region.

So we could solve linear programming problems by:
(1) Computing all the vertices, using linear algebra.
(2) Plugging the objective function into each of these vertices.

Unfortunately, an n-dimensional cube has 2n vertices and other constraints
could easily increase this number. This exponential complexity can over-
whelm the fastest computers; some industrial problems have n > 500.

In the mid 1940’s, George Dantzig invented the simplex algorithm for
solving linear programming problems. It attempts to minimize the number
of vertices computed and move toward the one that solves the optimization
problem.

George Bernard Dantzig (1914 – 2005) was an American mathematical sci-
entist who made contributions to industrial engineering, operations re-
search, computer science, economics, and statistics.

We will not go into the simplex method’s details; the interested reader
is referred to [14]. Maxima has a library implementing it invoked by

load (" simplex ")

It’s fairly easy to use. We have a command:

maximize_lp (o b j e c t i v e , condit ions , [pos])

The optional argument [pos] is a list of variables that are assumed to be
positive (putting them in this list turns out to be more efficient that simply
defining them to be > 0 in the list of conditions).

For instance, the sample problem at the beginning of this section could
be solved by

7.6. LINEAR PROGRAMMING 135

maximize_lp (5 * g−2* s , [s <=200 , s >=100 ,
g<=170 ,g>=80 , s+g >=200])

to produce

[650 , [g = 170 , s = 100]]

We also have a

minimize_lp (o b j e c t i v e , condit ions , [pos])

command whose action is self-explanatory.
For much more complex problems (where it’s hard to simply give a list

of inequalities), we have the command

linear_program (A, b , c)

Here:
A is a matrix and b and c are vectors. The command computes a vector,

x, that minimizes c · x among all the vectors with the property that Ax = b,
and x ≥ 0 .

Here’s an example:

A: matrix ([1 , 1 , − 1 , 0] , [2 , −3 ,0 , −1] , [4 , − 5 , 0 , 0]) ;
b : [1 , 1 , 6] ;
c : [1 , − 2 , 0 , 0] ;
linear_program (A, b , c) ;

resulting in [[
13
2

, 4 ,
19
2

, 0
]

,−3
2

]
where the first list gives the vector, x, and the second value is the objective
function at that point.

There are two error-messages that these commands give:

� Problem not feasible! — in this case, the inequalities contradict each
other so there are no feasible solutions. Example: x>=2, x<=1.

� Problem not bounded! — in this case the feasible region is
unbounded and the solution is infinite. Example

maximize_lp (x , [x >=0])

136 7. LINEAR ALGEBRA

EXERCISES.

1. A manufacturer of ski clothing makes ski pants and ski jackets. The
profit on a pair of ski pants is $3.00 and on a jacket is $2.00. Both pants
and jackets require the work of sewing operators and cutters. There are 60
minutes of sewing operator time and 48 minutes of cutter time available.
It takes 8 minutes to sew one pair of ski pants and 4 minutes to sew one
jacket. Cutters take 4 minutes on pants and 8 minutes on a jacket.

Find the maximum profit and the amount of pants and jackets to max-
imize the profit.

2. A farmer has a field of 70 acres in which he plants potatoes and
corn. The seed for potatoes costs $20/acre, the seed for corn costs $60/acre
and the farmer has set aside $3000 to spend on seed. The profit per acre of
potatoes is $150 and the profit for corn is $50 an acre.

Find the optimal solution for the farmer.

7.6.2. Integer programming and “industrial strength” problems. All
of the problems we have considered must be regarded as “toy” problems:
The number of variables and constraints are small enough to be listed in a
command. In addition, we don’t have constraints that require some vari-
ables to be integers. It turns out that last consideration makes linear pro-
gramming infinitely harder. The mere simplex algorithm cannot handle it.

For these problems, we need specialized software, namely ‘glpk’, de-
veloped (in the early 2000’s) by the Department for Applied Informatics,
Moscow Aviation Institute, Moscow, Russia. They used it for designing
airplane and jet engines.

It has been released into the public domain (and is, therefore free soft-
ware) and enhanced many times in the intervening years.

� Most Linux distributions have a packaged version of it.
� The original source code can be found at

https://www.gnu.org/software/glpk/
� A Windows port can be found at

https://winglpk.sourceforge.net/
� A Macintosh version can be found at

https://ports.macports.org/port/glpk/
It implements its own (fairly simple) programming language that allows
for

� arrays of variables, constraints, and data
� requiring some variables to be integers or even binary (0 or 1)
� reading these arrays from files

The manual that is packaged with the software is almost 200 pages, but
most of it is devoted to accessing glpk from a C or C++ program (so, in
particular, one can do that!). It can also be accessed from python programs.

We will want to run it in a standalone mode, which is relatively simpler.
Here’s a sample program in the GNU MathProg modeling language:

7.6. LINEAR PROGRAMMING 137

A TRANSPORTATION PROBLEM
#
This problem f i n d s a l e a s t c o s t shipping schedule t h a t meets
requirements a t markets and suppl ies a t f a c t o r i e s .
#
References :
Dantzig G B , " Linear Programming and Extensions . "
Princeton Univers i ty Press , Princeton , New Jersey , 1963 ,
Chapter 3 −3.

s e t I ;
/ * canning p l a n t s * /

s e t J ;
/ * m a r k e t s * /

param a { i in I } ;
/ * c a p a c i t y o f p l a n t i in c a s e s * /

param b { j in J } ;
/ * demand a t marke t j in c a s e s * /

param d { i in I , j in J } ;
/ * d i s t a n c e in t h o u s a n d s o f m i l e s * /

param f ;
/ * f r e i g h t in d o l l a r s p e r c a s e p e r thousand m i l e s * /

param c { i in I , j in J } := f * d [i , j] / 1000 ;
/ * t r a n s p o r t c o s t in t h o u s a n d s o f d o l l a r s p e r c a s e * /

var x { i in I , j in J } >= 0 ;
/ * sh ipment q u a n t i t i e s in c a s e s * /

minimize c o s t : sum{ i in I , j in J } c [i , j] * x [i , j] ;
/ * t o t a l t r a n s p o r t a t i o n c o s t s in t h o u s a n d s o f d o l l a r s * /

s . t . supply { i in I } : sum{ j in J } x [i , j] <= a [i] ;
/ * o b s e r v e sup p ly l i m i t a t p l a n t i * /

s . t . demand{ j in J } : sum{ i in I } x [i , j] >= b [j] ;
/ * s a t i s f y demand a t marke t j * /

data ;
s e t I := S e a t t l e San−Diego ;
s e t J := New−York Chicago Topeka ;

param a := S e a t t l e 350
San−Diego 6 0 0 ;

param b := New−York 325
Chicago 300
Topeka 2 7 5 ;

param d : New−York Chicago Topeka :=
S e a t t l e 2 . 5 1 . 7 1 . 8
San−Diego 2 . 5 1 . 8 1 . 4 ;

param f := 9 0 ;

end ;

You run this (in Linux) by putting it into a file ‘transp.mod’ and typing

g l p s o l −m transp .mod −o output . t x t

Normally, this only prints the whether the program succeeded and some
other information. The actual results of the program (i.e., the solution to
the problem) go into the file ‘output.txt’, which is
Problem : transp
Rows : 6
Columns : 6
Non−zeros : 18
S t a t u s : OPTIMAL
Objec t ive : c o s t = 153 .675 (MINimum)

138 7. LINEAR ALGEBRA

No. Row name St A c t i v i t y Lower bound Upper bound Marginal
−−−−−− −−−−−−−−−−−− −− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

1 c o s t B 153 .675
2 supply [S e a t t l e]

NU 350 350 < eps
3 supply [San−Diego]

B 550 600
4 demand[New−York]

NL 325 325 0 .225
5 demand[Chicago]

NL 300 300 0 .153
6 demand[Topeka]

NL 275 275 0 .126

No. Column name St A c t i v i t y Lower bound Upper bound Marginal
−−−−−− −−−−−−−−−−−− −− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

1 x [S e a t t l e ,New−York]
B 50 0

2 x [S e a t t l e , Chicago]
B 300 0

3 x [S e a t t l e , Topeka]
NL 0 0 0 .036

4 x [San−Diego ,New−York]
B 275 0

5 x [San−Diego , Chicago]
NL 0 0 0 .009

6 x [San−Diego , Topeka]
B 275 0

Karush−Kuhn−Tucker o p t i m a l i t y condi t ions :

KKT. PE : max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

KKT. PB : max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

KKT.DE: max . abs . e r r = 0 . 0 0 e+00 on column 0
max . r e l . e r r = 0 . 0 0 e+00 on column 0
High q u a l i t y

KKT.DB: max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

End of output

Several points become clear:
(1) The program has three types of identifiers: sets, params, and vars.

Elements of sets can be names or numbers and are used to index
identifiers.

Examples: A=1..10 (this is the set 1,2,3,4,5,6,7,8,9,10), B=0..1
by .1 (this is the set 0,.1,.2,.3,.4,.5.,6,.7,.8,.9,1; by is an optional key-
word), Weekdays=monday tuesday wednesday thursday friday.
Sets do not need to have names: {1,2,7}, {a,b,1..50}.

(2) The constraints are all labeled and begin with ‘s.t.’ (meaning
‘subject to’, which can also be spelled out).

(3) The program is in three parts: declarations, constraints (including
the objective function), and data.

The statement

param c { i in I , j in J } := f * d [i , j] / 1000 ;

shows how one implicitly iterates over all elements of a set without coding
loop-commands (although these also exist in this language).

The statement

7.6. LINEAR PROGRAMMING 139

minimize c o s t : sum{ i in I , j in J } c [i , j] * x [i , j] ;
/ * t o t a l t r a n s p o r t a t i o n c o s t s in t h o u s a n d s o f d o l l a r s * /

defines the objective function and illustrates a command, ‘sum’ that
combines results of iterations over sets. Such “combining commands”
include‘prod’, ‘min’, and ‘max’.

The difference between ‘var’s and ‘param’s is that
(1) ‘param’s are assumed to be given, and
(2) ‘var’s are assumed to be initially undefined, and glpk attempts to

assign values to the ‘var’s that satisfy the constraints.
Although this is a “toy” program, the data section could easily have had
thousands of entries and be read from a file. If data is in a separate file, it
could be named transp.dat and the program would be run via

g l p s o l −m transp .mod −−data transp . dat −o output . t x t

Data could also be read in a csv file (comma-separated values, a format
spreadsheets use), or a mysql database.

The following example shows how linear programming with integer
variables takes a problem out of the realm of linear algebra into that of
arbitrary logic and general programming.
/ * ZEBRA, Who Owns t h e Zebra ? * /

/ * Wr i t t en in GNU MathProg by Andrew Makhorin <mao@mai2 . r c n e t . ru> * /

###
The Zebra Puzzle i s a well −known l o g i c puzzle .
#
I t i s o f ten c a l l e d " E i n s t e i n ’ s Puzzle " or " E i n s t e i n ’ s Riddle "
because i t i s sa id to have been invented by Albert E i n s t e i n as a boy ,
with the common claim t h a t E i n s t e i n sa id " only 2 percent of the
world ’ s population can solve " . I t i s a l s o sometimes a t t r i b u t e d to
Lewis C a r r o l l . However , there i s no known evidence for E i n s t e i n ’ s or
C a r r o l l ’ s authorship .
#
There are s e v e r a l vers ions of t h i s puzzle . The vers ion below i s
quoted from the f i r s t known p u b l i c a t i o n in L i f e I n t e r n a t i o n a l
magazine on December 17 , 1962 .
#
1 . There are f i v e houses .
2 . The Englishman l i v e s in the red house .
3 . The Spaniard owns the dog .
4 . Coffee i s drunk in the green house .
5 . The Ukrainian drinks tea .
6 . The green house i s immediately to the r i g h t of the ivory house .
7 . The Old Gold smoker owns s n a i l s .
8 . Kools are smoked in the yellow house .
9 . Milk i s drunk in the middle house .
1 0 . The Norwegian l i v e s in the f i r s t house .
1 1 . The man who smokes C h e s t e r f i e l d s l i v e s in the house next to the
man with the fox .
1 2 . Kools are smoked in the house next to the house where the horse
i s kept .
1 3 . The Lucky S t r i k e smoker drinks orange j u i c e .
1 4 . The Japanese smokes Parl iaments .
1 5 . The Norwegian l i v e s next to the blue house .
#
Now, who drinks water ? Who owns the zebra ?
#
In the i n t e r e s t of c l a r i t y , i t must be added t h a t each of the f i v e
houses i s painted a d i f f e r e n t color , and t h e i r i n h a b i t a n t s are of
d i f f e r e n t n a t i o n a l e x t r a c t i o n s , own d i f f e r e n t pets , drink d i f f e r e n t
beverages and smoke d i f f e r e n t brands of American c i g a r e t t e s . One
other thing : In statement 6 , r i g h t means your r i g h t .
#
(From Wikipedia , the f r e e encyclopedia .)
###

140 7. LINEAR ALGEBRA

s e t HOUSE := { 1 . . 5 } ;

s e t COLOR := { " blue " , " green " , " ivory " , " red " , " yellow " } ;

s e t NATIONALITY := { " Englishman " , " Japanese " , " Norwegian " , " Spaniard " ,
" Ukranian " } ;

s e t DRINK := { " c o f f e e " , " milk " , " orange_ ju ice " , " t ea " , " water " } ;

s e t SMOKE := { " C h e s t e r f i e l d " , " Kools " , " Lucky_Strike " , " Old_Gold " ,
" Parl iament " } ;

s e t PET := { " dog " , " fox " , " horse " , " s n a i l s " , " zebra " } ;

var c o l o r {HOUSE, COLOR} , binary ;
c1 { h in HOUSE} : sum{ c in COLOR} c o l o r [h , c] = 1 ;
c2 { c in COLOR} : sum{ h in HOUSE} c o l o r [h , c] = 1 ;

var n a t i o n a l i t y {HOUSE, NATIONALITY} , binary ;
n1 { h in HOUSE} : sum{ n in NATIONALITY} n a t i o n a l i t y [h , n] = 1 ;
n2 { n in NATIONALITY } : sum{ h in HOUSE} n a t i o n a l i t y [h , n] = 1 ;

var drink {HOUSE, DRINK} , binary ;
d1 { h in HOUSE} : sum{ d in DRINK} drink [h , d] = 1 ;
d2 { d in DRINK } : sum{ h in HOUSE} drink [h , d] = 1 ;

var smoke {HOUSE, SMOKE} , binary ;
s1 { h in HOUSE} : sum{ s in SMOKE} smoke [h , s] = 1 ;
s2 { s in SMOKE} : sum{ h in HOUSE} smoke [h , s] = 1 ;

var pet {HOUSE, PET } , binary ;
p1 { h in HOUSE} : sum{ p in PET } pet [h , p] = 1 ;
p2 { p in PET } : sum{ h in HOUSE} pet [h , p] = 1 ;

/ * t h e Englishman l i v e s in t h e r e d house * /
f2 { h in HOUSE} : n a t i o n a l i t y [h , " Englishman "] = c o l o r [h , " red "] ;

/ * t h e S p a n i a r d owns t h e dog * /
f3 { h in HOUSE} : n a t i o n a l i t y [h , " Spaniard "] = pet [h , " dog "] ;

/ * c o f f e e i s drunk in t h e g r e e n house * /
f4 { h in HOUSE} : drink [h , " c o f f e e "] = c o l o r [h , " green "] ;

/ * t h e Ukra in i an d r i n k s t e a * /
f5 { h in HOUSE} : n a t i o n a l i t y [h , " Ukranian "] = drink [h , " tea "] ;

/ * t h e g r e e n house i s i m m e d i a t e l y t o t h e r i g h t o f t h e i v o r y house * /
f6 { h in HOUSE} :

c o l o r [h , " green "] = i f h = 1 then 0 e lse c o l o r [h−1 , " ivory "] ;

/ * t h e Old Gold smoker owns s n a i l s * /
f7 { h in HOUSE} : smoke [h , " Old_Gold "] = pet [h , " s n a i l s "] ;

/ * K o o l s a r e smoked in t h e y e l l o w house * /
f8 { h in HOUSE} : smoke [h , " Kools "] = c o l o r [h , " yellow "] ;

/ * mi l k i s drunk in t h e mi dd l e house * /
f9 : drink [3 , " milk "] = 1 ;

/ * t h e Norwegian l i v e s in t h e f i r s t house * /
f10 : n a t i o n a l i t y [1 , " Norwegian "] = 1 ;

/ * t h e man who smokes C h e s t e r f i e l d s l i v e s in t h e house nex t t o t h e man
with t h e f o x * /

f11 { h in HOUSE} :
(1 − smoke [h , " C h e s t e r f i e l d "]) +
(i f h = 1 then 0 e lse pet [h−1 , " fox "]) +
(i f h = 5 then 0 e lse pet [h+1 , " fox "]) >= 1 ;

/ * K o o l s a r e smoked in t h e house nex t t o t h e house where t h e h o r s e i s
k e p t * /

f12 { h in HOUSE} :
(1 − smoke [h , " Kools "]) +
(i f h = 1 then 0 e lse pet [h−1 , " horse "]) +
(i f h = 5 then 0 e lse pet [h+1 , " horse "]) >= 1 ;

/ * t h e Lucky S t r i k e smoker d r i n k s o ran ge j u i c e * /
f13 { h in HOUSE} : smoke [h , " Lucky_Strike "] = drink [h , " orange_ ju ice "] ;

/ * t h e J a p a n e s e smokes P a r l i a m e n t s * /
f14 { h in HOUSE} : n a t i o n a l i t y [h , " Japanese "] = smoke [h , " Parl iament "] ;

7.6. LINEAR PROGRAMMING 141

/ * t h e Norwegian l i v e s nex t t o t h e b l u e house * /
f15 { h in HOUSE} :

(1 − n a t i o n a l i t y [h , " Norwegian "]) +
(i f h = 1 then 0 e lse c o l o r [h−1 , " blue "]) +
(i f h = 5 then 0 e lse c o l o r [h+1 , " blue "]) >= 1 ;

solve ;

p r i n t f "\n" ;
p r i n t f "HOUSE COLOR NATIONALITY DRINK SMOKE PET\n" ;
for { h in HOUSE}
{ p r i n t f "%5d" , h ;

p r i n t f { c in COLOR: c o l o r [h , c] } " %−6s " , c ;
p r i n t f { n in NATIONALITY : n a t i o n a l i t y [h , n] } " %−11s " , n ;
p r i n t f { d in DRINK: drink [h , d] } " %−12s " , d ;
p r i n t f { s in SMOKE: smoke [h , s] } " %−12s " , s ;
p r i n t f { p in PET : pet [h , p] } " %−6s " , p ;
p r i n t f "\n" ;

}
p r i n t f "\n" ;

end ;

This program contains several new elements:
(1) the ‘solve’ command that tells glpk to assign values to all of the

‘var’s that satisfy the constraints. It appears at the end of the
constraints section, where a ‘maximize’ or ‘minimize’ command
might appear.

(2) the ‘binary’ declaration. This forces a variable to only take on the
values 0 or 1.

(3) the ‘printf’ statement that causes data to be printed out as the pro-
gram executes, so one does not need to locate the information in
the output file. The format-string is like that used in the C pro-
gramming language.

CHAPTER 8

Calculus of Finite Differences

“In the following exposition of the Calculus of Finite Differences,
particular attention has been paid to the connexion of its methods
with those of the Differential Calculus — a connexion which in
some instances involves far more than a merely formal analogy.”
— George Boole, in the introduction to [5].

8.1. A discrete introduction to finite differences

In this chapter, we will consider a discrete analogue to differential cal-
culus. Isaac Newton invented it at roughly the same time as he invented
calculus and used it to perform exacting numerical computations.

Isaac Newton FRSa(1642 – 1726/27) was an English polymath active as a
mathematician, physicist, astronomer, alchemist, theologian, and author
who was described in his time as a natural philosopher. He was a key
figure in the Scientific Revolution and the Enlightenment that followed.
His pioneering book Philosophiæ Naturalis Principia Mathematica (Mathemat-
ical Principles of Natural Philosophy), first published in 1687, consolidated
many previous results and established classical mechanics. Newton also
made seminal contributions to optics, and shares credit with the German
mathematician Gottfried Wilhelm Leibniz for developing infinitesimal cal-
culus, though Newton developed calculus years before Leibniz (and gave
it the more appropriate name, fluxions). He is considered one of the greatest
and most influential scientists in history.

aFellow of the Royal Society

As we have seen, Maxima has built-in commands diff and integrate
(among others) for ordinary calculus, while it has none for finite-difference
calculus. We’ll program these commands using a very powerful Maxima
programming language feature called macros.

What commands do we need to implement? The most basic ones are:

DEFINITION 8.1.1. If f (x) is a function, define

(1) E(f)(x) = f (x + 1)
(2) ∆ f (x) = f (x + 1)− f (x) = E(f)− f or ∆ = E − 1.
(3) Σb

a f (x) = ∑b
x=a f (x) (we assume a, b, and x are integers).

143

144 8. CALCULUS OF FINITE DIFFERENCES

REMARK. The operations ∆ and Σ are approximate inverses because of
the Fundamental Theorems of finite-difference calculus:

Σb
a∆ f (x) = E(f)(b)− f (a)(8.1.1)

∆Σx
a f (x) = E(f)

Because of this, Σ is sometimes written as ∆−1.

One breakthrough in differential calculus occurred when it was discov-
ered that

dxn

dx
= nxn−1

so that ∫
xndx =

xn+1

n + 1
Something similar happens in finite difference calculus with Pochhammer
symbols or falling factorials:

DEFINITION 8.1.2. If n is an integer and x is a real number, then the
falling factorial of x is defined by

x(n) =


x · (x − 1) · · · (x − n + 1) if n ≥ 1
1 if n = 0

1
(x+1)···(x−n) if n < 0

REMARK. Falling factorials were initially only defined for positive val-
ues of n. This is easily extended by noting that

x(n+1)

x(n)
= x − n

which implies (setting n = 0) that x(0) = 1, and

(8.1.2) x(−1) =
1

x + 1
At the end of section 12.1 on page 189 this definition is extended to

arbitrary complex values of n.

Leo August Pochhammer (1841 – 1920) was a Prussian mathematician
who was known for his work on special functions and introducing the
Pochhammer symbol.

PROPOSITION 8.1.3. Let n be an integer and let x ∈ C. Then

(8.1.3) ∆x(n) = n · x(n−1)

Since this has the same structural properties as derivatives of functions
like xn, we can prove the finite-difference version of the Taylor Series:

f (x) = f (a) + ∆[f](a)(x − a)(1) +
∆2[f](a)(x − a)(2)

2!
(8.1.4)

+
∆3[f](a)(x − a)(3)

3!
+ · · ·(8.1.5)

8.1. A DISCRETE INTRODUCTION TO FINITE DIFFERENCES 145

called Gregory–Newton interpolation formula. Newton proved its validity for
f a polynomial.

James Gregory FRSa (1638 – 1675) was a Scottish mathematician and as-
tronomer. His surname is sometimes spelled as Gregorie, the original Scot-
tish spelling. He described an early practical design for the reflecting tele-
scope — the Gregorian telescope — and made advances in trigonometry,
discovering infinite series representations for several trigonometric func-
tions.
In his book Geometriæ Pars Universalis (1668) Gregory gave both the first
published statement and proof of the fundamental theorem of calculus
(from a geometric point of view, and only for a special class of curves).

aFellow of the Royal Society

It’s not hard to see that, if a ∈ R then

∆ax = (a − 1)ax

so that
∆2x = 2x

It follows that 2x is the finite-difference version of ex in regular calculus.
Let D denote the differential operator, so

(D f)(x) = f ′(x)

The conventional Taylor series implies that

f (x + 1) = f (x) + D f (x) · 1 +
D2 f (x)

2!
12 + · · ·

or

f (x + 1) =
(

1 + D +
D2

2!
+ · · ·

)
f (x)

Since the bracketed series looks like that for ex, we conclude

E = eD

and
∆ = eD − 1

or
∆ + 1 = eD

from which we conclude

D = ln(1 + ∆)(8.1.6)

= ∆ − ∆2

2
+

∆3

3
− ∆4

4
+ · · ·

It looks as though we have played very fast and loose with these operators,
but this equation is valid when applied to any polynomial, and many other
functions. One problem is that, even when it converges, it does so very
slowly.

The interested reader is referred to Boole’s classic, [5], which is still
very relevant today.

146 8. CALCULUS OF FINITE DIFFERENCES

Incidentally, Boole is famous in his own right for boolean algebras and
boolean operations used in designing modern computers.

George Boole (1815 – 1864) was a largely self-taught English mathemati-
cian, philosopher, and logician, most of whose short career was spent as
the first professor of mathematics at Queen’s College, Cork in Ireland. He
worked in the fields of differential equations and algebraic logic, and is best
known as the author of The Laws of Thought (1854) which contains Boolean
algebra. Boolean logic is credited with laying the foundations for the Infor-
mation Age, alongside the work of Claude Shannon.

Now we’ll investigate Harmonic numbers

H(n) =
n

∑
i=1

1
n

so ∆H(n) = 1/(n + 1) = n(−1) (see equation 8.1.2 on page 144).

PROPOSITION 8.1.4. If k ≥ 1, then

∆k H(n)(1) = (−1)k+1(k − 1)!n(−k)(1) =
(−1)k+1

k(k + 1)

PROOF. Induction on k: If true for k − 1, we have

∆k−1H(n)(1) = (−1)k(k − 1)!n(−k+1)(1)

and

∆k H(n) = ∆∆k−1H(n) = −(−1)k(k − 2)! · (k − 1) · n(−k)(1)

= (−1)k+1(k − 1)!n(−k)(1)

by proposition 8.1.3 on page 144. Definition 8.1.2 on page 144 shows that

(−1)k+1(k − 1)!n(−k)(1) =
(−1)k+1(k − 1)!

(1 + 1)(1 + 2) · · · (1 + k)
=

(−1)k+1

k(k + 1)

□

The Gregory-Newton series for harmonic numbers is, therefore,

H(x) = 1 +
x
2
−

(x − 1)(2)
6 · 2!

+ · · ·+
(−1)k+1(x − 1)(k)

k(k + 1)k!
+ · · ·

Now we implement falling factorials — and this series:

poch [x , n] : = block (
[] ,
i f n=0 then return (1) ,
i f n=1 then return (x) ,
poch [x , n − 1] * (x−n+1)

) ;

h (x) :=1+sum((− 1) ^ (n+1)* poch [x −1 ,n] / (n * (n+1)*n !) , n , 1 , 5 0) ;

Plotting this with the command

8.1. A DISCRETE INTRODUCTION TO FINITE DIFFERENCES 147

x

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16 18 20

FIGURE 8.1.1. The harmonic numbers

plot2d (h (x) , [x , 1 , 2 0]) ;

gives figure 8.1.1. The lack of wild oscillations shows that the harmonic
numbers lend themselves to representation by a polynomial (compare this
with what happens with prime numbers in the next section!).

EXERCISES.

1. Compute
n

∑
i=0

x(−i)

where i ̸= 1. How do we handle the case where i = 1?

2. For n ≥ 0 an integer, show that xn can be written as a linear combi-
nation of falling factorials. Hint: use induction on n.

3. Prove equation 8.1.3 on page 144.

4. Show that
x(n)
n!

=

(
x
n

)
5. Show that equation 8.1.4 on page 144 is true for all polynomials.

6. Prove the Product Formula

(8.1.7) ∆(f g) = ∆(f)E(g) + f ∆(g)

or
∆(f g) = f ∆g + g∆ f + ∆ f ∆g

148 8. CALCULUS OF FINITE DIFFERENCES

7. Prove Summation by Parts

(8.1.8) Σn
m f ∆g = E(f g)(n)− (f g)(m)− Σn

mE(g)∆ f

where E(g)(x) = g(x + 1).

8. Is there a way to make equation 8.1.6 on page 145 rigorous?

9. Find a closed-form equation for
n

∑
k=0

k · 2k

Hint: Use summation by parts.

10. Prove Euler’s Formula for harmonic numbers

Hn =
∫ 1

0

1 − tn

1 − t
dt

This allows us to define Hn for n not an integer. For instance

H1/2 = 2 − 2 log(2) = 0.6137056388801094 . . .

8.2. Functional Programming and Macros

In this section, we’ll implement the operators defined in the previous
section in Maxima and apply them. Ideally, these operators could be im-
plemented in a functional programming language:

A programming language is said to be functional if func-
tions can be treated as data-items: i.e., they can be passed
to other functions as parameters or arguments, and a func-
tion can return a function as its value.

There are many functional languages today: Scheme
(an interesting dialect of Lisp), Common Lisp, Python,
Haskell, etc. One might wonder why Maxima doesn’t
simply “inherit” functional programming from Common
Lisp. The problem is that Maxima was originally written
for Maclisp, an early form of Lisp without functional
programming.

Oddly, no volunteers have stepped up and offered to
rewrite Maxima (from scratch!) in modern Lisp to imple-
ment functional programming.

In a functional language, we could write

Bdel ta (f , x) : = lambda ([f , x] , f (x+1)− f (x))

and

Bdel ta (sin , x)

would return

8.2. FUNCTIONAL PROGRAMMING AND MACROS 149

lambda ([sin , x] , sin (x+1)− sin (x))

whereas Maxima actually returns

lambda ([f , x] , f (x+1)− f (x))

It turns out we can “fake” features of a functional language using constructs
called macros. When f (x, y, z) is called, Maxima

(1) evaluates x, y, z
(2) jumps to the function-code and plugs those values into the body

of f .
(3) then returns with the computed values

A macro f (x, y, z) superficially resembles a function but it
(1) executes the body of the macro on x, y, z and other expressions (do-

ing something like a text-edit), inserting it into the code where it
was called — i.e., no jumping and returning,

(2) then it executes the revised expression.
Here’s our code for the ∆-operator using a macro built in to Maxima called
buildq:

Bdel ta (f , x) := buildq ([y : x , g : f] ,
lambda ([y] , g (y+1)−g (y))

) ;

The way this executes is:
(1) buildq edits the lambda-expression, replacing y by x and g by f

(think of it as a text-edit, although the actual algorithm is faster)
(2) then it executes it

Bdel ta (sin , x)

produces

lambda ([x] , sin (x+1)− sin (x))

and

Bdel ta (sin , x) (x)

produces

sin (x+1)− sin (x)

Having implemented ∆, we can try to implement ∆n:

Bdeltan (f , x , n) : = block ([] ,
i f n=1 then return (Bdel ta (f , x)) ,
Bdel ta (Bdeltan (f , x , n −1) , x)
) ;

For instance, the command

Bdeltan (sin , x , 3) (x)

150 8. CALCULUS OF FINITE DIFFERENCES

x

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10

FIGURE 8.2.1. The Gregory-Newton series

returns
sin (x + 3)− 3 sin (x + 2) + 3 sin (x + 1)− sin (x)

Now we’ll try our hand at the Gregory-Newton series (equation 8.1.4 on
page 144)

d i s c r e t e _ s i n (x) : =sum(
poch [x , n] * (Bdeltan (sin , x , n) (0)) / n ! ,
n , 1 , 2 0) ;

After doing this, we plot the result with

plot2d (d i s c r e t e _ s i n (x) , [x , 0 , 1 0])

to get figure 8.2.1, which shows that the Gregory-Newton series converges
for some non-polynomial functions.

Now, we will try something more ambitious: a formula for prime num-
bers!

Let

primes : [2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3 ,
2 9 , 3 1 , 3 7 , 4 1 , 4 3 , 4 7 , 5 3 , 5 9 , 6 1 , 6 7 ,
7 1 , 7 3 , 7 9 , 8 3 , 8 9 , 9 7 , 1 0 1 , 1 0 3 , 1 0 7 ,
1 0 9 , 1 1 3 , 1 2 7 , 1 3 1 , 1 3 7 , 1 3 9 , 1 4 9 , 1 5 1 , 1 5 7]

denote a bunch of primes. We turn this into a function (because our rou-
tines work with functions) via

prime_fun (n) : = primes [n]

and compute a bunch of ∆’s via

d e l l i s t : makelist (Bdeltan (prime_fun , x , n) (1) , n , 2 0) ;

— note that we’re running this Gregory-Newton series from a = 1 rather
than 0.

This gives

d e l l i s t : [1 ,1 , −1 ,3 , −9 ,23 , −53 ,115 ,
−237 ,457 , −801 ,1213 , −1389 ,
445 ,3667 , −15081 ,41335 ,

8.2. FUNCTIONAL PROGRAMMING AND MACROS 151

x

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8 9 10

FIGURE 8.2.2. Polynomial giving the first 10 primes

−95059 ,195769 , −370803] ;

Now we define the series itself

pol (x) :=2+sum(d e l l i s t [k] * poch [x −1 ,k]/k ! , k , 1 , 2 0) ;

This gives a polynomial such that
(1) pol(1)=2
(2) pol(2)=3
(3) pol(7)=17

Now, let’s plot it!

plot2d (pol (x) , [x , 1 , 1 0])

What happened? It looks as though prime numbers don’t lend themselves
to be expressed by a polynomial. While one can create a polynomial that
equals these primes, it oscillates wildly between them.

If we cut out the worst oscillations, we still get figure 8.2.3 on the fol-
lowing page.

See chapter 13 on page 211 for a far more profound discussion of prime
numbers.

EXERCISES.

1. Program equation 8.1.6 on page 145 for sin(x) and x = 0.

2. Does the Gregory-Newton series work for all analytic functions?
Hint: try expanding sin(πx) in a Gregory-Newton series.

3. Find a closed-form equation for ∆n f (x). Hint: write ∆n = (E − 1)n

and use the Binomial Theorem.

152 8. CALCULUS OF FINITE DIFFERENCES

x

-250

-200

-150

-100

-50

 0

 50

 2 3 4 5 6 7 8 9 10

FIGURE 8.2.3. Prime polynomial plot

4. Write a non-recursive version of the

Bdeltan

command, using the equation in exercise 3 on the previous page.

CHAPTER 9

Nonlinear algebra

“Cantor illustrated the concept of infinity for his students by
telling them that there was once a man who had a hotel with
an infinite number of rooms, and the hotel was fully occupied.
Then one more guest arrived. So the owner moved the guest in
room number 1 into room number 2; the guest in room number
2 into number 3; the guest in 3 into room 4, and so on. In that
way room number 1 became vacant for the new guest.

What delights me about this story is that everyone involved,
the guests and the owner, accept it as perfectly natural to carry
out an infinite number of operations so that one guest can have
peace and quiet in a room of his own. That is a great tribute to
solitude.”

— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of
Snow, by Peter Høeg (see [21]).

9.1. Introduction

As the previous chapter made clear, complex nonlinear algebraic equa-
tions often arise in practical applications.

9.2. Ideals and systems of equations

Define
W = C[X1, . . . , Xn]

to represent the set of all polynomials in variables X1, . . . , Xn with complex
coefficients (i.e. coefficients in C)

This mathematical structure is called a ring. More formally:

DEFINITION 9.2.1. A ring, R, is a set equipped with two binary opera-
tions, denoted + and multiplication, ·, such that, for all r1, r2, r2 ∈ R,

(1) (r1 + r2) + r3 = r1 + (r2 + r3)
(2) (r1 · r2) · r3 = r1 · (r2 · r3)
(3) r1 · (r2 + r3) = r1 · r2 + r1 · r3
(4) (r1 + r2) · r3 = r1 · r3 + r1 · r3
(5) there exists elements 0, 1 ∈ R such that r + 0 = 0 + r = r and

r · 1 = 1 · r = r for all r ∈ R.
(6) For every r ∈ R, there exists an element s ∈ R such that r + s = 0.

The ring R will be called commutative if r1 · r2 = r2 · r1 for all r1, r2 ∈ R.
A division ring is one in which every nonzero element has a multiplica-

tive inverse.

153

154 9. NONLINEAR ALGEBRA

A subring S ⊂ R is a subset of R that is also a ring under the operations
+ and ·.

REMARK. We will also regard the set containing only the number 0 as a
ring with 0+ 0 = 0 = 0 · 0 — the trivial ring (the multiplicative and additive
identities are the same). When an operation is written with a ‘+’ sign it is
implicitly assumed to be commutative.

EXAMPLE. Perhaps the simplest example of a ring is the integers, Z.
This is simple in terms of familiarity to the reader but a detailed analysis of
the integers is a very deep field of mathematics in itself (number theory).
Its only units are ±1, and it has no zero-divisors.

We can use the integers to construct:

EXAMPLE. If m is an integer, the numbers modulo m, Zm is a ring un-
der addition and multiplication modulo m. In Z6, the elements 2 and 3 are
zero-divisors because 2 · 3 = 0 ∈ Z6.

EXAMPLE 9.2.2. The rational numbers, Q, are an example of a field.
Other examples: the real numbers, R, and the complex numbers, C.

REMARK. We have seen (and worked with) many examples of rings
before, Z, Zm, Q, R, and C. The rings Q, R, and C are commutative division
rings — also known as fields.

DEFINITION 9.2.3. If R is a ring, rings of polynomials R[X] is the ring
of polynomials where addition and multiplication are defined(

n

∑
i=0

aiXi

)
+

(
m

∑
i=0

biXi

)
=

max(n,m)

∑
i=0

(ai + bi)Xi

(
n

∑
i=0

aiXi

)(
m

∑
j=0

bjX j

)
=

n+m

∑
k=0

(
∑

i+j=k
aibj

)
Xk

with ai, bj ∈ R and ai = 0 if i > n and bi = 0 if i > m.
More formally, one can define R[X] as the set of infinite sequences

(9.2.1) (r0, . . . , ri, . . .)

with the property that all but a finite number of the ri vanish, and with
addition defined by

(r0, . . . , ri, . . .) + (s0, . . . , si, . . .) = (r0 + s0, . . . , ri + si, . . .)

and multiplication defined by

(r0, . . . , ri, . . .)(s0, . . . , si, . . .) = (t0, . . . , ti, . . .)

with

tn = ∑
i+j=n

i≥0,j≥0

risj

9.2. IDEALS AND SYSTEMS OF EQUATIONS 155

(the convolution of the lists of coefficients — see definition 5.2.1 on page 78).
In this case,

k

∑
i=0

riXi

becomes the notation for the sequence (r0, . . . , ri, . . . , rk, 0 · · ·).

We need one more definition:

DEFINITION 9.2.4. If R is a commutative ring, an ideal is a subset closed
under addition I ⊂ R such that x · r ∈ I for all r ∈ R.

(1) An ideal, I ⊂ R is prime if a · b ∈ I implies that a ∈ I or b ∈ I (or
both).

(2) The ideal generated by α1, . . . , αn ∈ R, denoted (α1, . . . αn) ⊆ R, is
the set of all linear combinations

n

∑
k=1

rk · αk · sk

where the ri and si run over all elements of R. The element 0 is an
ideal, as well as the whole ring. The set α1, . . . , αn ∈ R is called a
basis for the ideal (α1, . . . αn).

(3) An ideal I ⊂ R is maximal if I ⊂ K, where K is an ideal, implies
that K = R. This is equivalent to saying that for any r ∈ R with
r /∈ I,

I+ (r) = R

(4) An ideal generated by a single element of R is called a principal ideal.
(5) Given two ideals a and b, their product is the ideal generated by all

products {(a · b)|∀a ∈ a, b ∈ b}.

REMARK. We will usually denote ideals by Fraktur letters.

EXAMPLE. We claim that the ideals of Z are just the sets

(0) = {0}
(2) = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . }
(3) = {. . . ,−6,−3, 0, 3, 6, 9, 12, . . . }

...
(n) = {n · Z}

for various values of n. Note that the ideal (1) = Z. An ideal (n) ⊂ Z is
prime if and only if n is a prime number.

Now, suppose f1, . . . , fs ∈ W = C[X1, . . . , Xn], and suppose we want
to solve the system of algebraic equations

f1(X1, . . . , Xn) = 0
...

fs(X1, . . . , Xn) = 0(9.2.2)

156 9. NONLINEAR ALGEBRA

If g1, . . . , gt ∈ W is a set of polynomials with the property that

(f1, . . . , fs) = (g1, . . . , gt) = B

— i.e., the gj are another basis for the ideal generated by the fi, then the
equations in 9.2.2 on the previous page are equivalent to

g1(X1, . . . , Xn) = 0
...

gt(X1, . . . , Xn) = 0

To see that, note that, since the fi are a basis for B and the gi ∈ B, we
have equations

gi =
s

∑
j=1

ai,j f j

where ai,j ∈ W for all i and j. It follows that f1 = · · · = fs = 0 implies that
g1 = · · · = gt = 0. Since the gj are also a basis for B, the reverse implication
is also true.

EXAMPLE 9.2.5. Suppose we want to find solutions to the system of
algebraic equations

xy = z2

xz = 1

x2 + y2 = 3

We first make these into equations set to zero

xy − z2 = 0
xz − 1 = 0

x2 + y2 − 3 = 0

and find another basis for the ideal these polynomials generate. It turns out1

that

(xy − z2, xz − 1, x2 + y2 − 3) = (z8 − 3z2 + 1, y − z3, z7 − 3z + x)

So our original equations are equivalent to the equations

z8 − 3z2 + 1 = 0

y − z3 = 0

z7 − 3z + x = 0

or

z8 − 3z2 + 1 = 0

y = z3

x = 3z − z7

1This is not at all obvious! Later, we will look at an algorithm for coming to this
conclusion.

9.3. GRÖBNER BASES 157

so that it follows that our original set of equations had eight solutions: find
8 roots of the polynomial in z and plug them into the equations for x and y.

It follows that there are applications to finding “simplified” or “im-
proved” bases for ideals in polynomial rings.

9.3. Gröbner bases

One of the most powerful technique for computations in polynomial
rings use a special basis for an ideal, called a Gröbner basis. Gröbner bases
were discovered by Bruno Buchberger.

Bruno Buchberger 1942 –) is Professor of Computer Mathematics at Jo-
hannes Kepler University in Linz, Austria. In his 1965 Ph.D. thesis (see [9]),
he created the theory of Gröbner bases, and has refined this construction in
subsequent papers — see [10, 8]. He named these objects after his advisor
Wolfgang Gröbner. Since 1995, he has been active in the Theoremaa project
at the University of Linz.
In 1987 Buchberger founded and chaired the Research Institute for Sym-
bolic Computation (RISC) at Johannes Kepler University. In 1985 he started
the Journal of Symbolic Computation, which has now become the premier
publication in the field of computer algebra.
Buchberger also conceived Softwarepark Hagenberg in 1989 and since then
has been directing the expansion of this Austrian technology park for soft-
ware.

aA system for automatic theorem-proving.

One key idea in the theory of Gröbner bases involves imposing an or-
dering on monomials:

DEFINITION 9.3.1. Define an ordering on the elements of Nn and an
induced ordering on the monomials of F[X1, . . . , Xn] by α = (a1, . . . , an) ≻
β = (b1, . . . , bn) implies that

∏ Xai
i ≻ ∏ Xbi

i

The ordering of Nn must satisfy the conditions:
(1) if α ≻ β and γ ∈ Nn, then α + γ ≻ β + γ
(2) ≻ is a well-ordering: every set of elements of Nn has a minimal

element.
For any polynomial f ∈ F[X1, . . . , Xn], let LT(f) denote its leading term in
this ordering — the polynomial’s highest-ordered monomial with its coef-
ficient.

REMARK. Condition 1 implies that the corresponding ordering of
monomials is preserved by multiplication by a monomial. Condition 2
implies that there are no infinite descending sequences of monomials.

DEFINITION 9.3.2. Suppose an ordering has been chosen for the mono-
mials of F[X1, . . . , Xn]. If a ∈ F[X1, . . . , Xn] is an ideal, let LT(a) denote the
ideal generated by the leading terms of the polynomials in a.

158 9. NONLINEAR ALGEBRA

(1) If a = (f1, . . . , ft), then { f1, . . . , ft} is a Gröbner basis for a if

LT(a) = (LT(f1), . . . , LT(ft))

(2) A Gröbner basis { f1, . . . , ft} is minimal if the leading coefficient of
each fi is 1 and for each i

LT(fi) /∈ (LT(f1), . . . , LT(fi−1), LT(fi+1), . . . LT(ft))

(3) A Gröbner basis { f1, . . . , ft} is reduced if the leading coefficient of
each fi is 1 and for each i and no monomial of fi is contained in

(LT(f1), . . . , LT(fi−1), LT(fi+1), . . . LT(ft))

REMARK. There are many different types of orderings that can be used
and a Gröbner basis with respect to one ordering will generally not be one
with respect to another.

DEFINITION 9.3.3. The two most common orderings used are:

(1) Lexicographic ordering2. Let N denote the natural numbers
and let Nn represents sequences of n natural numbers. Let
α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Nn. Then α > β ∈ Nn if, in
the vector difference α − β ∈ Zn, the leftmost nonzero entry is
positive — and we define

∏ Xai
i ≻ ∏ Xbi

i

so
XY2 ≻ Y3Z4

This is the ordering that we will use.
(2) Graded reverse lexicographic order. Here, monomials are first or-

dered by total degree — i.e., the sum of the exponents. Ties are
resolved lexicographically (in reverse — higher lexicographic or-
der represents a lower monomial).

REMARK. In Graded Reverse Lexicographic order, we get

X4Y4Z7 ≻ X5Y5Z4

since the total degree is greater. As remarked above, Gröbner bases de-
pend on the ordering, ≻: different orderings give different bases and even
different numbers of basis elements.

Gröbner bases give an algorithmic procedure for deciding whether a
polynomial is contained in an ideal and whether two ideals are equal.

9.4. Buchberger’s Algorithm

Unfortunately, Buchberger’s algorithm can have exponential
time-complexity — for graded-reverse lexicographic ordering — and
doubly-exponential (een

) complexity for lexicographic ordering (see [31]).
This, incidentally, is why we discussed resultants of polynomials: the
complexity of computing Gröbner bases (especially with lexicographic
ordering, which leads to the Elimination Property) can easily overwhelm

2Also called dictionary-ordering.

9.4. BUCHBERGER’S ALGORITHM 159

powerful computers. Computing resultants is relatively simple (they boil
down to computing determinants).

In practice it seems to have a reasonable running time. In special cases,
we have:

(1) For a system of linear polynomials, Buchberger’s algorithm re-
duces to Gaussian Elimination for putting a matrix in upper tri-
angular form.

(2) For polynomials over a single variable, it becomes Euclid’s algo-
rithm for finding the greatest common divisor for two polynomi-
als.

In 1950, Gröbner published a paper ([19]) that explored an algorithm for
computing Gröbner bases, but could not prove that it ever terminated. One
of Buchberger’s signal contributions were the introduction of constructs
called S-polynomials. For details, see [40, chapter 5].

The main property of Gröbner bases that will interest us is:

PROPOSITION 9.4.1 (Elimination Property). Suppose {g1, . . . , gj} is a
Gröbner basis for the ideal a ∈ C[X1, . . . , Xn], computed using lexicographic
ordering with

X1 ≻ X2 ≻ · · · ≻ Xn

If 1 ≤ t ≤ n, then
a∩ C[Xt, . . . , Xn]

has a Gröbner basis that is

{g1, . . . , gj} ∩ C[Xt, . . . , Xn]

REMARK. This is particularly important in using Gröbner bases to
solve systems of algebraic equations. Here, we want to eliminate variables
if possible and isolate other variables. In example 9.2.5 on page 156, we
have the ideal

B = (xy − z2, xz − 1, x2 + y2 − 3)
and can find a Gröbner basis for it with lexicographic ordering with x ≻
y ≻ z of

(z8 − 3z2 + 1, y − z3, z7 − 3z + x)
Here, the basis element z8 − 3z2 + 1 is an element of B ∩ C[z] ⊂ C[x, y, z]
and the variables x and y have been eliminated from it. It follows that z,
alone, must satisfy

z8 − 3z2 + 1 = 0
and we can solve for x and y in terms of z:

y = z3

x = 3z − z7

PROOF. See [40, chapter 5]. □

Maxima has a package that computes Gröbner bases using
lexicographic ordering. To load it, type

load (" grobner ")

160 9. NONLINEAR ALGEBRA

Its main commands3 are

poly_grobner (poly − l i s t , var − l i s t)

and

poly_reduced_grobner (poly − l i s t , var − l i s t)

For example:

poly_grobner ([x^2+y^2 , x^3−y ^ 4] , [x , y])

returns
(x2 + y2, x3 − y4, x4 + xy2, y6 + y4)

— the Gröbner basis with lexicographic order: x ≻ y. The command

poly_reduced_grobner ([x^2+y^2 , x^3−y ^ 4] , [x , y])

returns [
y2 + x2, y4 + xy2, y6 + y4

]
a Gröbner basis with extraneous elements deleted.

9.5. Consistency of algebraic equations

In linear algebra it’s well known that systems like

x + y = 2
2x + 2y = 3

have no solution; they are inconsistent.
Given a system of algebraic equations

f1(x1, . . . , xn) = v1(9.5.1)
...

fm(x1, . . . , xn) = vm

we construct an ideal

A = (f1(x1, . . . , xn)− v1, . . . , fm(x1, . . . , xn)− vm)

and try to find an “improved” basis for it, i.e,

A = (b1, . . . , bk)

so that the original equations are equivalent to

b1 = · · · = bk = 0

Suppose we discover that
1 ∈ A

This implies that
A = (1)

and that
1 = 0

3The ones that will interest us, anyway.

9.5. CONSISTENCY OF ALGEBRAIC EQUATIONS 161

is equivalent to the original set of equations. Since this is clearly impossible,
it follows that the original set of equations was inconsistent.

A theorem due to David Hilbert, called the Nullstellensatz (see [40],
chapter 12, 12.2.3) shows that inconsistent equations always imply that 1 ∈
A.

David Hilbert (1862–1943) was one of the most influential mathematicians
in the 19th and early 20th centuries, having contributed to algebraic and
differential geometry, physics, and many other fields.

We conclude that
The system of equations in 9.5.1 on the preceding page is incon-
sistent if and only if 1 ∈ A, which happens if and only if

poly_reduced_grobner ([f1 −v1 , . . . , fm−vm] ,
[x1 , . . . , xn])

returns [1].

EXERCISES.

1. Solve the equations

x2 + y2 = 0

x3 − y4 = 0

2. Solve the equations

a1a2 − b1b2 + a1 − 1 = 0

a2b1 + a1b2 + b1 − 1/2 = 0

a1
2 + b1

2 − 1 = 0

a2
2 + b2

2 − 1 = 0

3. If
(a2 + 1)(b2 + 1) + 25 = 10(a + b)

and
ab = 1

what is
a3 + b3

equal to?

4. Solve

x2 + xy + y2 = 39

y2 + yz + z2 = 49

z2 + zx + x2 = 19

162 9. NONLINEAR ALGEBRA

5. Find a solution to the system

a1 · x15 + a2 · x25 + a3 · x35 = 1/6

a1 · x14 + a2 · x24 + a3 · x34 = 1/5

a1 · x13 + a2 · x23 + a3 · x33 = 1/4

a1 · x12 + a2 · x22 + a3 · x32 = 1/3

a1 · x1 + a2 · x2 + a3 · x3 = 1/2
a1 + a2 + a3 = 1

CHAPTER 10

Robot motion-planning

“Geometry is one and eternal shining in the mind of God. That
share in it accorded to men is one of the reasons that Man is the
image of God.”

— Johannes Kepler, Conversation with the Sidereal Messenger
(an open letter to Galileo Galilei), [36].

10.1. A simple robot-arm

Suppose we have a robot-arm with two links, as in figure 10.1.1.

If we assume that both links are of length ℓ, suppose the second link
were attached to the origin rather than at the end of the second link.

Then its endpoint would be at (see equation 7.5.2 on page 132) ℓ cos(ϕ)
ℓ sin(ϕ)

1

 =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 1 0 ℓ
0 1 0
0 0 1

 0
0
1


=

 cos(ϕ) − sin(ϕ) ℓ cos(ϕ)
sin(ϕ) cos(ϕ) ℓ sin(ϕ)

0 0 1

 0
0
1


In other words, the effect of moving from the origin to the end of the

second link (attached to the origin) is

(1) displacement by ℓ — so that (0, 0) is moved to (ℓ, 0) = (ℓ, 0, 1) ∈ R3.
(2) rotation by ϕ

This is the effect of the second link on all of R2. If we want to compute the
effect of both links, insert the first link into the system — i.e. rigidly attach
the second link to the first, displace by ℓ, and rotate by θ. The effect is

FIGURE 10.1.1. A simple robot arm

163

164 10. ROBOT MOTION-PLANNING

equivalent to multiplying by

M2 =

 cos(θ) − sin(θ) ℓ cos(θ)
sin(θ) cos(θ) ℓ sin(θ)

0 0 1


It is clear that we can compute the endpoint of any number of links in this
manner — always inserting new links at the origin and moving the rest of
the chain accordingly.

At this point, the reader might wonder

Where does algebra enter into all of this?

The point is that we do not have to deal with trigonometric functions until
the very last step. If a, b ∈ R are numbers with the property that

(10.1.1) a2 + b2 = 1

there is a unique angle θ with a = cos(θ) and b = sin(θ). This enables us
to replace the trigonometric functions by real numbers that satisfy equa-
tion 10.1.1 and derive purely algebraic equations for

(1) the set of points in R2 reachable by a robot-arm
(2) strategies for reaching those points (solving for explicit angles).

In the simple example above, let a1 = cos(θ), b1 = sin(θ), a2 = cos(ϕ), b2 =
sin(ϕ) so that our equations for the endpoint of the second link become x

y
1

 =

 a1 −b1 ℓa1
b1 a1 ℓb1
0 0 1

 ℓa2
ℓb2
1


=

 ℓa1a2 − ℓb2b1 + ℓa1
ℓb1a2 + ℓa1b2 + ℓb1

1


It follows that the points (x, y) reachable by this link are those for which
the system of equations

ℓa1a2 − ℓb2b1 + ℓa1 − x = 0
ℓb1a2 + ℓa1b2 + ℓb1 − y = 0

a2
1 + b2

1 − 1 = 0

a2
2 + b2

2 − 1 = 0(10.1.2)

has real solutions (for ai and bi). Given values for x and y, we can solve for
the set of configurations of the robot arm that will reach (x, y). We set the
lengths of the robot arms to 1. The system of equations 10.1.2 gives rise to
the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 − y, a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

in C[a1, a2, b1, b2]. If we set x = 1 and y = 1/2, the Gröbner basis of r (using
the command ‘Basis(r,plex(a1,b1,a2,b2))’ in Maple) is

(−55 + 64 b2
2, 8 a2 + 3, 16 b2 − 5 + 20 b1,−5 − 4 b2 + 10 a1)

10.1. A SIMPLE ROBOT-ARM 165

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2

-29.447
o

112.024
o

(1,.5)

FIGURE 10.1.2. Reaching a point

from which we deduce that a2 = −3/8 and b2 can be either +
√

55/8 in
which case

a1 = 1/2 +
√

55/20

b1 = 1/4 −
√

55/10

or −
√

55/8 in which case

a1 = 1/2 −
√

55/20

b1 = 1/4 +
√

55/10

Another question we might ask is:

For what values of x are points on the line y = 1− 2x reachable?
In this case, we start with the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 + 2x − 1,

a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

and get the Gröbner basis

poly_reduced_grobner ([a1 * a2−b1 * b2+a1−x ,
a2 * b1+a1 * b2+b1+2*x −1 , a1^2+b1^2 −1 , a2^2+b2 ^2 −1] ,
[a1 , b1 , a2 , b2 , x])

to get

[−5 x2 + 4 x + 2 a2 + 1,

− 25 x4 + 40 x3 − 6 x2 − 8 x − 4 b2
2 + 3,

− 5 x3 + 4 x2 + 4 b2 x + 3 x + 4 b1 b2 − 2 b2,

− 5 x2 − 5 b1 x + 4 x − b2 + 2 b1 + a1 − 1,

− 10 x3 − 10 b1 x2 + 13 x2 − 2 b2 x + 8 b1 x − 6 x − 2 b1 + 1]

166 10. ROBOT MOTION-PLANNING

FIGURE 10.2.1. A more complicated robot arm

The second line

−25 x4 + 40 x3 − 6 x2 − 8 x − 4 b2
2 + 3

is significant: Since all variables are real, 4b2
2 ≥ 0, which requires

(10.1.3) −25 x4 + 40 x3 − 6 x2 − 8 x + 3 ≥ 0

If we type

solve (−25* x^4+40*x^3−6*x^2−8*x +3=0 ,[x])

we get [
x = −

√
19 − 2

5
, x =

√
19 + 2

5
, x = − i − 2

5
, x =

i + 2
5

]
Since our variables are all real, we discard the last two solutions. Since the
polynomial is > 0 for x = 0,we conclude that solution to the inequality
in 10.1.3 is

x ∈
[

2 −
√

19
5

,
2 +

√
19

5

]
— so those are the only points on the line y = 1− 2x that the robot-arm can
reach.

10.2. A more complex robot-arm

We conclude this chapter with a more complicated robot-arm in fig-
ure 10.2.1— somewhat like a Unimation Puma 5601.

It has:
(1) A base of height ℓ1 and motor that rotates the whole assembly by

ϕ1 — with 0 being the positive x-axis.
(2) An arm of length ℓ2 that can be moved forward or backward by

an angle of θ1 — with 0 being straight forward (in the positive
x-direction).

1In 1985, this type of robot-arm was used to do brain-surgery! See [26].

10.2. A MORE COMPLEX ROBOT-ARM 167

(3) A second arm of length ℓ3 linked to the first by a link of angle θ2,
with 0 being when the second arm is in the same direction as the
first.

(4) A little “hand” of length ℓ4 that can be inclined from the second
arm by an angle of θ3 and rotated perpendicular to that direction
by an angle ϕ2.

We do our computations in R4, start with the hand and work our way to
the base. The default position of the hand is on the origin and pointing
in the positive x-direction. It displaces the origin in the x-direction by ℓ2,
represented by the matrix

D0 =


1 0 0 ℓ2

0 1 0 0

0 0 1 0

0 0 0 1


The angle ϕ1 rotates the arm in the xy-plane, and is therefore represented
by 

cos(ϕ1) − sin(ϕ1) 0 0
sin(ϕ1) cos(ϕ1) 0 0

0 0 1 0
0 0 0 1


or

Z1 =


a1 −b1 0 0
b1 a1 0 0
0 0 1 0
0 0 0 1


with a1 = cos(ϕ2) andb1 = sin(ϕ2). The “wrist” inclines the hand in the
xz-plane by an angle of θ3, given by the matrix

Z2 =


a2 0 −b2 0
0 1 0 0
b2 0 a2 0
0 0 0 1


with a2 = cos(θ3) and b2 = sin(θ3) and the composite is

Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


The second arm displaces everything by ℓ3 in the x-direction, giving

D1 =


1 0 0 ℓ3

0 1 0 0

0 0 1 0

0 0 0 1



168 10. ROBOT MOTION-PLANNING

so

D1Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4 + ℓ3

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


so and then inclines it by θ2 in the xz-plane, represented by

Z3 =


a3 0 −b3 0
0 1 0 0
b3 0 a3 0
0 0 0 1


so that Z3D1Z2Z1D0 is

a3a2 − b3b2 (−a3b2 − b3a2) b1 (−a3b2 − b3a2) a1 (a3a2 − b3b2) ℓ4 + a3ℓ3

0 a1 −b1 0

b3a2 + a3b2 (a3a2 − b3b2) b1 (a3a2 − b3b2) a1 (b3a2 + a3b2) ℓ4 + b3ℓ3

0 0 0 1


Continuing in this fashion, we get a huge matrix, Z. To find the end-

point of the robot-arm, multiply


0
0
0
1


(representing the origin of R3 ⊂ R4) by Z to get

(10.2.1)


x
y
z
1

 =


((a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2) ℓ4 + (a5a3 + b5b4b3) ℓ3 + a5ℓ2

((b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2) ℓ4 + (b5a3 − a5b4b3) ℓ3 + b5ℓ2

(a4b3a2 + a4a3b2) ℓ4 + a4b3ℓ3 + ℓ1

1


where a3 = cos(θ2), b3 = sin(θ2), a4 = cos(θ1), b4 = sin(θ1) and a5 =
cos(ϕ1), b5 = sin(ϕ1). Note that a2

i + b2
i = 1 for i = 1, . . . , 5. We are also

interested in the angle that the hand makes (for instance, if we want to pick

10.2. A MORE COMPLEX ROBOT-ARM 169

something up). To find this, compute

(10.2.2) Z


1
0
0
1

− Z


0
0
0
1

 = Z


1
0
0
0

 =


(a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2

(b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2

a4b3a2 + a4a3b2

0


The numbers in the top three rows of this matrix are the direction-cosines of
the hand’s direction. We can ask what points the arm can reach with its
hand aimed in a particular direction.If we set ℓ1 = ℓ2 = 1, equation 10.2.1
on the facing page implies that the endpoint of the robot-arm are solutions
to the system

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0
a2

3 + b2
3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(10.2.3)

If we want to know which points it can reach with the hand pointing in the
direction  1/

√
3

1/
√

3
1/

√
3


use equation 10.2.2 to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1/
√

3 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 − 1/
√

3 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 − 1/
√

3 = 0

a2
2 + b2

2 − 1 = 0(10.2.4)

We regard these terms (in equations 10.2.3 and 10.2.4 as generators of
an ideal, P.

To understand possible configurations of the robot-arm, we compute a
Gröbner basis of P with lexicographic ordering. Unfortunately, we run up
against the een

-execution time: This Maxima program

poly_grobner ([a5 * a4 * a3−a5 * b4 * b3+a5 * a4−x ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4−y ,
b4 * a3+a4 * b3+b4−z ,
(a5 * a4 * a3−a5 * b4 * b3) * a2+(−a5 * a4 * b3−a5 * b4 * a3) * b2−1/ s q r t (3) ,
(b5 * a4 * a3−b5 * b4 * b3) * a2+(−b5 * a4 * b3−b5 * b4 * a3) * b2−1/ s q r t (3) ,
(b4 * a3+a4 * b3) * a2 +(a4 * a3−b4 * b3) * b2−1/ s q r t (3) ,

170 10. ROBOT MOTION-PLANNING

a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2 , x , y , z]) ;

runs for several hours and crashes due to memory issues. We can try an-
other piece of free software, Macaulay 2, which can compute Gröbner bases
(among other things). The program

R=QQ[a_5 , a_4 , a_3 , a_2 , b_5 , b_4 , b_3 , b_2 ,w, x , y , z ,
MonomialOrder=>Lex]

Z= ideal (a_5 * a_4 * a_3−a_5 * b_4 * b_3+a_5 * a_4−x ,
b_5 * a_4 * a_3−b_5 * b_4 * b_3+b_5 * a_4−y ,
b_4 * a_3+a_4 * b_3+b_4−z ,
(a_5 * a_4 * a_3−a_5 * b_4 * b_3) * a_2+
(− a_5 * a_4 * b_3−a_5 * b_4 * a_3) * b_2−w,
(b_5 * a_4 * a_3−b_5 * b_4 * b_3) * a_2+
(− b_5 * a_4 * b_3−b_5 * b_4 * a_3) * b_2−w,
(b_4 * a_3+a_4 * b_3) * a_2 +(a_4 * a_3−b_4 * b_3) * b_2−w,
a_2^2+b_2 ^2 −1 ,
a_3^2+b_3 ^2 −1 ,
a_4^2+b_4 ^2 −1 ,
a_5^2+b_5^2−1
)
P=gb Z
gens P

runs for several hours and crashes when it tries to allocate more than 4 gi-
gabytes of memory (my computer has more, but the system seems reluctant
to allocate it).

We finally use the free system, Singular, from the University of Karl-
sruhe in Germany. It uses newer and greatly improved algorithms for com-
puting Gröbner bases. It is, perhaps, the most advanced such program in
the world.

The cryptic Singular program

option (redSB) ; / / Causes S i n g u l a r t o compute a r e d u c e d
/ / Groebner b a s i s

ring R= (0) , (a_5 , a_4 , a_3 , a_2 , b_5 , b_4 , b_3 , b_2 , x , y , z ,w) , lp ;
/ / numeric 0= r a t i o n a l c o e f f i c i e n t s
/ / l p = l e x i c o g r a p h i c o r d e r i n g
ideal s = a_5 * a_4 * a_3−a_5 * b_4 * b_3+a_5 * a_4−x ,
b_5 * a_4 * a_3−b_5 * b_4 * b_3+b_5 * a_4−y ,
b_4 * a_3+a_4 * b_3+b_4−z ,
(a_5 * a_4 * a_3−a_5 * b_4 * b_3) * a_2+

(− a_5 * a_4 * b_3−a_5 * b_4 * a_3) * b_2−w,
(b_5 * a_4 * a_3−b_5 * b_4 * b_3) * a_2+

(− b_5 * a_4 * b_3−b_5 * b_4 * a_3) * b_2−w,
(b_4 * a_3+a_4 * b_3) * a_2 +(a_4 * a_3−b_4 * b_3) * b_2−w,

10.2. A MORE COMPLEX ROBOT-ARM 171

a_2^2+b_2 ^2 −1 ,
a_3^2+b_3 ^2 −1 ,
a_4^2+b_4 ^2 −1 ,
a_5^2+b_5 ^2 −1;
slimgb (s) ; / / Causes S i n g u l a r t o t r y t o use t h e

/ / s m a l l e s t e x p r e s s i o n s

immediately comes back with the results in appendix A on page 225. Here
‘0’ is the digit zero, which represents rational coefficients for the polynomials.
Since 1/

√
3 is not rational, we make it into a variable.

Incidentally, the commercial computer algebra software, Maple 16, also
comes back with an answer quickly, but an incorrect one. This author has
not had the opportunity to test the other major commercial system: Math-
ematica.

Several things leap out at us from the long list in appendix A on
page 225:

(1) 3*w^2-1
(2) 2*b_5^2-1
(3) a_5-b_5
(4) x-y

Since all elements of the Gröbner basis are implicitly set to 0, this means
w = ±1/

√
3; no other values are possible2. The second line implies that

x = y — a very severe restriction on where the robot-arm can reach (when
the hand is pointed in that direction).

This example was meant to illustrate what is called “the combinatorial
explosion” where even fast computers can be overwhelmed by the com-
plexities of a problem.

Maxima will be able to handle all of the other examples we do (and the
exercises!).

Suppose we want to reach the point (1,1,1) and we don’t care how the
hand is aligned. We try the Maxima commands

poly_reduced_grobner ([a5 * a4 * a3−a5 * b4 * b3+a5 * a4 −1 ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4 −1 ,
b4 * a3+a4 * b3+b4 −1 ,
a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2]) ;

and Maxima comes back (immediately!) with

[b22 + a22 − 1, 12b42 − 12b4 + 1, 4b32 − 3,

2b3b4 − b3 + a5,−6b3b4 + 4b3 − 3a4, 1 − 2a3, b5 + 2b3b4 − b3]

2We could’ve concluded this from geometric reasoning: this is the length of a unit-vector
manipulated by orthogonal transformations that leave length unchanged.

172 10. ROBOT MOTION-PLANNING

Conclusions:
� a3 = 1/2
� b3 = ±

√
3/4

� solve(12*b4^2−12*b4+1=0,b4) gives
[
b4 = −

√
6−3
6 , b4 =

√
6+3
6

]
� b5, a4, and a5 are uniquely determined by b3 and b4: a5 = b3 −

2b3b4, b5 = b3 − 2b3b4 = a5, a4 = 4b3/3 − 2b3b4
� a2 and b2 are free, subject only to the equation a22 + b22 = 1. They

rotate the hand and have no effect on its position.
So there an infinite number of solutions and, for each choice of a2 and b2,
there are 4 solutions for the other variables:

(1) a3 = 1/2, b3 =
√

3/4, b4 = −
√

6−3
6 = .09175117,

a4 =
√

3
√

6+
√

3
6 = .995781,a5 = 1/

√
2 = b5

(2) a3 = 1/2, b3 = −
√

3/4,b4 = −
√

6−3
6 = .09175117,

a4 = −
√

3
√

6+
√

3
6 = −.995781,a5 = −1/

√
2 = b5

(3) a3 = 1/2, b3 =
√

3/4, b4 =
√

6+3
6 = .9082482, a4 =

√
3·
√

6-
√

3
6 =

.4184316, a5 = 1/
√

2 = b5
(4) a3 = 1/2, b3 = −

√
3/4, b4 =

√
6+3
6 = .9082482,

a4 = −
√

3·
√

6-
√

3
6 = −.4184316, a5 = −1/

√
2 = b5

EXERCISES.

1. How far can the robot-arm in figure on page 166 reach? Hint: add
x2 + y2 + z2 − r2 to the list of expressions representing the robot-arm and
find reasonable values of r.

2. How can the robot-arm in figure on page 166 reach the point
(1/2,−1/3, 1)?

3. For the robot-arm in figure on page 166, why are there always an
even number of solutions (ignoring a2 and b2)? (Hint: consider its geome-
try).

CHAPTER 11

Differential Game Theory, a Drive-by

“Everything has been thought of before, but the problem is to
think of it again.”
— Johann Wolfgang von Goethe.

11.1. Dances with Limousines

Steering with his right hand and sipping a martini1 with his left,
Dr. Evil is pursuing James Bond in a limousine. Bond is on foot so the
limousine is much faster but has a large turning radius.

The limousine is controlled by its steering wheel, and Bond can run or
jump in any direction. We will set up a system of differential equations to
simulate this situation and solve them with the rk-command.

Fixed parameters:
(1) limo_turning_radius
(2) limo_speed
(3) bond_speed
(4) kill_distance

State variables:
limo_x The limousine’s x-coordinate
limo_y The limousine’s y-coordinate
limo_theta The angle the limousine makes with respect to the x-axis. Be-

tween −π and π.
limo_steering Position of the steering wheel. Between −π and π. It’s the

direction we want to go.
limo_dtheta The rate of change of limo_theta with respect to time, t —

determined by the steering wheel and turning_radius. Since
curvature is rate of change with respect to distance, s and since

ds
dt

= limo_speed

we get

− 1
turning_radius

≤ limo_dtheta
limo_speed

≤ 1
turning_radius

or

− limo_speed
turning_radius

≤ limo_dtheta ≤ limo_speed
turning_radius

1Stirred not shaken, of course!

173

174 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

so

limo_dtheta =min
(

max
(
− limo_speed

turning_radius
, limo_steering

)
,

limo_speed
turning_radius

)
limo_dx The limousine’s speed in the x-direction —

limo_speed · cos(limo_theta)
limo_dy The limousine’s speed in the y-direction —

limo_speed · sin(limo_theta)
bond_x
bond_y
bond_dx
bond_dy
The idea of this algorithm is that the limo’s direction is determined by the
angle limo_theta and its derivative with respect to arc-length is given by
the steering wheel. We determine the angle of a line connecting the limo to
bond (using the atan2-function) and increase or decrease the steering wheel
accordingly (subject to the turning radius).

limo_speed : 5 0 ;
l imo_turning_radius : 3 0 ;
t ime_step : . 0 1 ;

limo_dx (l imo_theta) : = limo_speed * cos (l imo_theta) ;
limo_dy (l imo_theta) : = limo_speed * s i n (l imo_theta) ;

normalize (t h e t a) : = block ([] ,
i f (theta >=%pi) then return (theta −2*%pi) ,
i f (theta <−%pi) then return (t h e t a +2*%pi) ,
t h e t a) ;

/ * Aim s t r a i g h t f o r Bond ! * /
l im o_ s t ee r i ng (bond_x , bond_y , limo_x , limo_y , l imo_theta)

:= block (
[angle : atan2 (bond_y−limo_y , bond_x−limo_x)] ,

angle −l imo_theta) ;

/ * Take t u r n i n g r a d i u s i n t o a c c o u n t . * /
l imo_dtheta (l im o_ s t ee r i ng) : = block (
[lim : limo_speed/l imo_turning_radius] ,
min (max(− lim , l i mo _s te er in g) , lim)
) ;

/ * Bond ’ s s t r a t e g i e s * /

/ * Matador s t r a t e g y : don ’ t move
u n l e s s t h e l imo comes c l o s e ! * /

bond_dx (bond_x , bond_y , limo_x , limo_y , l imo_theta)
:= block ([d i s t a n c e] ,

d i s t a n c e= s q r t ((bond_x−limo_x)^2+(limo_y −bond_y) ^ 2) ,

11.1. DANCES WITH LIMOUSINES 175

i f (dis tance <5) then return
(cos (l imo_theta+%pi /2)/ t ime_step) ,

0) ;

bond_dy (bond_x , bond_y , limo_x , limo_y , l imo_theta)
:= block ([d i s t a n c e] ,

d i s t a n c e= s q r t ((bond_x−limo_x)^2+(limo_y −bond_y) ^ 2) ,
i f (dis tance <5) then return

(s i n (l imo_theta+%pi /2)/ t ime_step) ,
0) ;
/ * End o f Bond ’ s s t r a t e g i e s * /

/ * Run t h e s i m u l a t i o n ! * /
pursui t : rk ([

limo_dx (l imo_theta) ,
limo_dy (l imo_theta) ,
l imo_dtheta (l im o_ s t ee r i ng (bond_x , bond_y ,

limo_x , limo_y , l imo_theta)) ,
bond_dx (bond_x , bond_y , limo_x , limo_y , l imo_theta) ,
bond_dy (bond_x , bond_y , limo_x , limo_y , l imo_theta)

] ,
[limo_x , limo_y , l imo_theta , bond_x , bond_y] ,
[0 , 0 , 0 , 1 0 , 1 0] ,
[t , 0 , 1 0 , t ime_step]

) ;

Unfortunately, this reasonable-looking approach fails miserably2.
Suppose we abandon angles and reference a unit-vector giving the di-

rection of the limo’s motion. If u(t) is a unit vector then

u • u = 1

so
d(u • u)

dt
= 2u • du

dt
= 0

It follows that
u ⊥ du

dt
So the vector we pick for du/dt must be perpendicular to u. In the follow-
ing program u is called limo_direction and du/dt is bond_at⊥(compare
with definition 7.3.4 on page 110):

limo_speed : 5 0 ;
l imo_turning_radius : 3 0 ;
t ime_step : . 0 1 ;
max_angle : limo_speed/l imo_turning_radius ;

d i r e c t i o n _ d (bond_position , l imo_posi t ion ,
l i m o _ d i r e c t i o n) : = block (

2Try running it!

176 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

[bond_at , dis tance , dot_prod , perp , d_vect , p_comp] ,
bond_at : f l o a t (bond_position −l imo_pos i t ion) ,

d i s t a n c e : f l o a t (sqr t (bond_at . bond_at)) ,
dot_prod : f l o a t (bond_at . l i m o _ d i r e c t i o n) ,
perp : f l o a t (bond_at − dot_prod * l i m o _ d i r e c t i o n) ,

/ * Compute t h e p r o j e c t i o n o f bond_at
on to l i m o _ d i r e c t i o n

Now compute t h e p e r p e n d i c u l a r v e c t o r , p e rp * /
perp_length : f l o a t (sqr t (perp . perp)) ,
i f (perp_length < . 0 1) then return (0) ,

/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

/ * Impose t h e turning − r a d i u s r e s t r i c t i o n s * /
i f (perp_length >max_angle) then

return ((max_angle/perp_length) * perp) ,
perp
) ;

limo_d (l i m o _ d i r e c t i o n) : = limo_speed * l i m o _ d i r e c t i o n ;

/ * Bond ’ s s t r a t e g i e s * /

/ * Matador s t r a t e g y :
don ’ t move u n l e s s t h e l imo comes c l o s e ! * /

bond_d (bond_position , l imo_posi t ion ,
l i m o _ d i r e c t i o n) : = block (

[bond_at : bond_position −l imo_posi t ion , d i s t a n c e] ,
d i s t a n c e : f l o a t (sqr t (bond_at . bond_at)) ,

bond_hit : (d is tance <1) ,
/ * We ’ r e done . Bond i s dead * /

i f (d i s t a n c e < 3) then
return (1 0 0 * matrix ([− l i m o _ d i r e c t i o n [1 , 2] ,

l i m o _ d i r e c t i o n [1 , 1]])) ,
0) ;
/ * End o f Bond ’ s s t r a t e g i e s * /

/ * I n i t i a l c o n d i t i o n s * /
l imo_pos i t ion : matrix ([0 , 0]) ;
bond_posit ion : matrix ([2 0 , − 2 0]) ;
l i m o _ d i r e c t i o n : matrix ([− 1 , 0]) ;
path : [] ;
bpath : [] ;
bond_hit : f a l s e ;
t imeout : f a l s e ;

/ * Run t h e s i m u l a t i o n ! * /
for t : 0 step t ime_step unless (bond_hit or t imeout)

11.1. DANCES WITH LIMOUSINES 177

do (
timeout : (t >100) ,
l imo_pos i t ion : l imo_pos i t ion

+ . 01 * limo_d (l i m o _ d i r e c t i o n) ,
bond_posit ion : bond_posit ion

+ . 01 * bond_d (bond_position ,
l imo_posi t ion , l i m o _ d i r e c t i o n) ,

l i m o _ d i r e c t i o n : l i m o _ d i r e c t i o n
+ . 01 * d i r e c t i o n _ d (bond_position ,

l imo_posi t ion , l i m o _ d i r e c t i o n) ,

/ * Record t h e l imo ’ s l o c a t i o n :
p l a c e t h e l imo ’ s c o o r d s
a t t h e end o f i t s pa th . * /

path : endcons ([l imo_pos i t ion [1 , 1] ,
l imo_pos i t ion [1 , 2]] , path) ,

/ * Normal i ze l i m o _ d i r e c t i o n
so i t r ema ins a uni t − v e c t o r * /

l i m o _ d i r e c t i o n :
f l o a t (l i m o _ d i r e c t i o n

/sqr t (l i m o _ d i r e c t i o n . l i m o _ d i r e c t i o n)) ,

/ * Record Bond ’ s l o c a t i o n :
p l a c e Bond ’ s c o o r d s a t t h e
end o f h i s pa th . * /

bpath : endcons ([bond_posit ion [1 , 1] ,
bond_posit ion [1 , 2]] , bpath)

) ; / * End o f f o r − l o o p * /

/ * Watch t h e dance ! * /
plot2d ([[d i s c r e t e , path] , [d i s c r e t e , bpath]] ,

[s t y l e , [l i n e s , 1] , [points , 1]] ,
[legend , " Limo " , "Bond"]) ;

Unfortunately, the rk-command requires its arguments to be real scalars
(argh!) and fails silently if they aren’t.

We dispense with the rk-command and use a finite-difference approxi-
mation to derivatives (see Euler’s method, equation 4.1.5 on page 47)

dlimo_direction
dt

∼ ∆limo_direction
∆t

which becomes more accurate the smaller ∆t is. We pick ∆t = .01 . Since
this is only an approximate derivative, limo_direction will grow with each
iteration of the for-loop. We reset it to being a unit-vector via

l i m o _ d i r e c t i o n :
f l o a t (l i m o _ d i r e c t i o n

/sqr t (l i m o _ d i r e c t i o n . l i m o _ d i r e c t i o n)) ,

178 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

Limo

Bond

-60

-50

-40

-30

-20

-10

 0

-40 -30 -20 -10 0 10 20 30

FIGURE 11.1.1. Turning radius=30

Take note of the command

/ * Record t h e l imo ’ s l o c a t i o n :
p l a c e t h e l imo ’ s c o o r d s
a t t h e end o f i t s pa th . * /

path : endcons ([l imo_pos i t ion [1 , 1] ,
l imo_pos i t ion [1 , 2]] , path) ,

for keeping a record of the limo’s position and compare to Note 7.1.1 on
page 100.

If we run the code as given above, we get figure 11.1.1, which shows
that it’s easy to evade a limo with a large turning radius that is close by —
just stand in one spot!

If we set the turning radius to 10, we get figure 11.1.2 on the next page,
where Bond has to jump around a bit.

Note that this program works in n-dimensions, whereas the program
using angles would only work in two, at best3.

If Bond stands far away (x=100, for instance) even a large turning ra-
dius limo manages to catch him — see figure 11.1.3 on the facing page. This
suggests a strategy to use when the turning radius is large.

Note that the limo starts by facing away from Bond. This is the initial
condition

l i m o _ d i r e c t i o n : matrix ([− 1 , 0]) ;

Something strange happens if Bond starts out on the positive x-axis, say at
(10,0). We get the plot in figure 11.1.4 on page 180, where the limo franti-
cally runs away from Bond! This is what is called the Gimbel Problem: certain
angles cause algorithms to lock up and execute incorrectly. This problem

3Although finding 100-dimensional limos might be hard!

11.1. DANCES WITH LIMOUSINES 179

Limo

Bond

-35

-30

-25

-20

-15

-10

-5

 0

-15 -10 -5 0 5 10 15 20 25 30 35 40

FIGURE 11.1.2. Turning radius=10

Limo

Bond

-60

-40

-20

 0

 20

 40

-40 -20 0 20 40 60 80 100 120

FIGURE 11.1.3. Bond far away

occurs because we assume that, if perp=0, we must be facing Bond whereas
we might be facing away from him.

Equation 7.3.1 on page 109 suggests the solution: if dot_prod > 0, we
are facing Bond, and if dot_prod < 0, we are facing away. We amend the
limo-code by replacing

perp_length : f l o a t (sqr t (perp . perp)) ,
i f (perp_length < . 0 1) then return (0) ,

/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

with

perp_length : f l o a t (sqr t (perp . perp)) ,
i f ((perp_length < . 0 1) and (dot_prod >0))

180 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

discrete1

discrete2

-1

-0.5

 0

 0.5

 1

-600 -500 -400 -300 -200 -100 0 100

FIGURE 11.1.4. Gimbel problem

Limo

Bond

-60

-50

-40

-30

-20

-10

 0

 10

-50 -40 -30 -20 -10 0 10 20 30

FIGURE 11.1.5. Solution to the Gimbel Problem

then return (0) ,
/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

i f (perp_length < . 0 1) then return
(matrix ([− l i m o _ d i r e c t i o n [1 , 2] ,

l i m o _ d i r e c t i o n [1 , 1]])) ,
/ * Jump s ideways , s o we ’ r e no l o n g e r l i n e d up

with Bond * /

and this gives us figure 11.1.5.

11.2. ROCK, PAPER, ROCKET 181

EXERCISES.

1. Why does the initial program that uses angles and atan2 fail?

2. Why did we need the timeout logical variable?

3. Dr. Evil is afraid of spilling his martini if he makes a left turn4.
Rewrite the limo program so it only makes right turns.

4. Rewrite the limo program so it is capable of hitting Bond even if its
turning radius is large and Bond is nearby. Hint: If Bond is nearby, put the
limo into back-off mode and drive away. When it’s far enough away, put it
back into attack mode.

5. In the program given, Bond always jumps in a direction perpendicu-
lar to the direction of the limo. Experiment with other angles.

6. Notice that Bond never gets tired and always jumps a huge distance
(100). Rewrite the program so Bond get tired after each jump, and the dis-
tance jumped decreases until he is unable to jump at all.

11.2. Rock, Paper, Rocket

In this section we consider the opposite problem from the last:
Is it possible to hit a fast object with a slow one?

Clearly, if the slow object merely chases the fast one, it will miss. We sup-
pose the fast object is headed to a target and the slow one starts out near
the target. We’ll begin by assuming that the fast object heads in a straight
line to the target.

We begin by coding the main loop and the rocket’s equations of motion:

rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ([1 0 0 , 3]) ;
t a r g e t _ l o c a t i o n : matrix ([0 , 0]) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ l o c a t i o n : copymatrix (r o c k e t _ s t a r t) ;
r o c k e t _ d i r : matrix ([1 , 0]) ;
rocket_path : [] ;

r o c k e t _ u n i t (r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n) : = block (
[v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t : f l o a t (sqr t (v e c t o r _ t o _ t a r g e t

4Reminiscent of an old road-sign in Ireland: “Don’t drink while you drive; you might
spill some.”

182 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

. v e c t o r _ t o _ t a r g e t)) ,
i f (d i s t _ t o _ t a r g e t < 1 . 0) then

return (matrix ([0 , 0])) ,
f l o a t (v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t)
) ;

for t : 0 step t ime_step unless (timeout or t a r g e t _ h i t)
do (

timeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t (r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 5 ,

r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n
+time_step * rocket_speed * rocket_di r ,

rocket_path : endcons ([r o c k e t _ l o c a t i o n [1 , 1] ,
r o c k e t _ l o c a t i o n [1 , 2]] , rocket_path)

) ;
plot2d ([d i s c r e t e , rocket_path] ,

[s t y l e , [l i n e s , 1] , [points , 1]]) ;

Now we add the code for the rock. We’ll begin by using the simplest code
possible: simply head in the direction of the rocket5. We have

rock_uni t (r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n ,
r o c k _ l o c a t i o n) : = block (

[vec tor_ to_rocke t , d i s t _ t o _ r o c k e t] ,
v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n

− rock_ loca t ion ,
d i s t _ t o _ r o c k e t : f l o a t (sqr t (v e c t o r _ t o _ r o c k e t

. v e c t o r _ t o _ r o c k e t)) ,
i f (d i s t _ t o _ r o c k e t < 1 . 0) then

return (matrix ([0 , 0])) ,
f l o a t (v e c t o r _ t o _ r o c k e t / d i s t _ t o _ r o c k e t)
) ;

and combining it with the previous code gives

rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ([1 0 0 , 3]) ;
t a r g e t _ l o c a t i o n : matrix ([0 , 0]) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ h i t : f a l s e ;
r o c k e t _ l o c a t i o n : copymatrix (r o c k e t _ s t a r t) ;
r o c k e t _ d i r : matrix ([1 , 0]) ;

5So our “rock” can be steered!

11.2. ROCK, PAPER, ROCKET 183

rock_speed : 1 0 ;
r o c k _ o f f s e t : matrix ([5 , 5]) ;
rocket_path : [] ;
r o c k _ l o c a t i o n : t a r g e t _ l o c a t i o n + r o c k _ o f f s e t ;
rock_path : [] ;

r o c k e t _ u n i t (r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n) : = block (
[v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t : f l o a t (sqr t (v e c t o r _ t o _ t a r g e t

. v e c t o r _ t o _ t a r g e t)) ,
i f (d i s t _ t o _ t a r g e t < 1 . 0) then

return (matrix ([0 , 0])) ,
f l o a t (v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t)
) ;

rock_uni t (r o c k e t _ l o c a t i o n ,
r o c k _ l o c a t i o n) : = block (

[vec tor_ to_rocke t , d i s t _ t o _ r o c k e t] ,
v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n

− rock_ loca t ion ,
d i s t _ t o _ r o c k e t : f l o a t (sqr t (v e c t o r _ t o _ r o c k e t

. v e c t o r _ t o _ r o c k e t)) ,
i f (d i s t _ t o _ r o c k e t < 1 . 0) then

return (matrix ([0 , 0])) ,
f l o a t (v e c t o r _ t o _ r o c k e t / d i s t _ t o _ r o c k e t)
) ;

for t : 0 step t ime_step
unless (timeout or t a r g e t _ h i t or r o c k e t _ h i t)

do (
timeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t (r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 5 ,

rock_dir : rock_uni t (r o c k e t _ l o c a t i o n ,
r o c k _ l o c a t i o n) ,

r o c k e t _ h i t : rock_dir . rock_dir < . 5 ,

r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n
+time_step * rocket_speed * rocket_di r ,

r o c k _ l o c a t i o n : r o c k _ l o c a t i o n
+time_step * rock_speed * rock_dir ,

rocket_path : endcons ([r o c k e t _ l o c a t i o n [1 , 1] ,
r o c k e t _ l o c a t i o n [1 , 2]] ,

rocket_path) ,
rock_path : endcons ([r o c k _ l o c a t i o n [1 , 1] ,

184 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

Rocket

Rock

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

FIGURE 11.2.1. Naive pursuit algorithm

r o c k _ l o c a t i o n [1 , 2]] , rock_path)
) ;

plot2d ([[d i s c r e t e , rocket_path] , [d i s c r e t e , rock_path]] ,
[s t y l e , [l i n e s , 1] , [points , 1]]) ;

This produces the plot in figure 11.2.1. Clearly, we have failed to stop the
rocket! If we increase the rock speed to 30, we get the plot in figure

As it nears the rocket, the rock simply chases it and will always lose.
We will try a slightly more sophisticated algorithm:

(1) Determine how far away the rocket is,
(2) Determine how long it would take to reach that point (at the speed

the rock travels),
(3) Estimate the possible future location of the rocket at that time, us-

ing the rocket’s direction,
(4) Aim for that location instead of the rocket’s present location.

/ * P r e d i c t i v e R o c k e t vs . Rock program * /
rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ([1 0 0 , 3]) ;
t a r g e t _ l o c a t i o n : matrix ([0 , 0]) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ h i t : f a l s e ;
r o c k e t _ l o c a t i o n : copymatrix (r o c k e t _ s t a r t) ;
r o c k e t _ d i r : matrix ([1 , 0]) ;

11.2. ROCK, PAPER, ROCKET 185

Rocket

Rock

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

FIGURE 11.2.2. Rock speed 30

rock_speed : 3 0 ;
r o c k _ o f f s e t : matrix ([5 , 5]) ;
rocket_path : [] ;

/ * The r o c k i s not l o c a t e d a t t h e t a r g e t ,
but o f f s e t from i t * /

r o c k _ l o c a t i o n : t a r g e t _ l o c a t i o n + r o c k _ o f f s e t ;
rock_path : [] ;

/ * The r o c k e t ’ s d i r e c t i o n o f t r a v e l * /
r o c k e t _ u n i t (r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n) : = block (
[v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t : f l o a t (sqr t (v e c t o r _ t o _ t a r g e t

. v e c t o r _ t o _ t a r g e t)) ,
i f (d i s t _ t o _ t a r g e t < 1 . 0) then

return (matrix ([0 , 0])) ,
f l o a t (v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t)
) ;

/ * The r o c k ’ s d i r e c t i o n o f t r a v e l * /
rock_uni t (r o c k e t _ l o c a t i o n , rock_ loca t ion ,

r o c k e t _ d i r) : = block (
[vec tor_ to_rocke t , d i s t _ t o _ r o c k e t ,

rocket_ future , vec tor_ to_ fu ture ,

186 11. DIFFERENTIAL GAME THEORY, A DRIVE-BY

d i s t _ t o _ f u t u r e] ,
v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n

− rock_ loca t ion ,
d i s t _ t o _ r o c k : f l o a t (sqr t (v e c t o r _ t o _ r o c k e t

. v e c t o r _ t o _ r o c k e t)) ,
i f (d i s t_ to_rock < 1 . 0) then

return (matrix ([0 , 0])) ,

/ * The r o c k e t ’ s p r e d i c t e d f u t u r e p o s i t i o n * /
r o c k e t _ f u t u r e : r o c k e t _ l o c a t i o n +

r o c k e t _ d i r * rocket_speed/rock_speed ,
v e c t o r _ t o _ f u t u r e : r o c k e t _ f u t u r e

−rock_ loca t ion ,
d i s t _ t o _ f u t u r e :

sqr t (v e c t o r _ t o _ f u t u r e . v e c t o r _ t o _ f u t u r e) ,
/ * Aim a t t h e f u t u r e p o s i t i o n ! * /

f l o a t (v e c t o r _ t o _ f u t u r e / d i s t _ t o _ f u t u r e)
) ;

for t : 0 step t ime_step
unless (timeout or t a r g e t _ h i t or r o c k e t _ h i t)

do (
timeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t (r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 1 ,
rock_dir : rock_uni t (r o c k e t _ l o c a t i o n ,

rock_ loca t ion , r o c k e t _ d i r) ,
r o c k e t _ h i t : rock_dir . rock_dir <.1 ,
i f (r o c k e t _ h i t) then p r i n t (" Rocket h i t ") ,
r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n

+time_step * rocket_speed * rocket_di r ,
r o c k _ l o c a t i o n : r o c k _ l o c a t i o n

+time_step * rock_speed * rock_dir ,
rocket_path : endcons ([r o c k e t _ l o c a t i o n [1 , 1] ,

r o c k e t _ l o c a t i o n [1 , 2]] ,
rocket_path) ,

rock_path : endcons ([r o c k _ l o c a t i o n [1 , 1] ,
r o c k _ l o c a t i o n [1 , 2]] , rock_path)

) ;
plot2d ([[d i s c r e t e , rocket_path] , [d i s c r e t e , rock_path]] ,

[s t y l e , [l i n e s , 1] , [points , 1]] ,
[legend , " Rocket " , " Rock "]) ;

We will also print out “Rocket hit” if this happens. We get the plot in fig-
ure 11.2.3 on the next page, the “Rocket hit” phrase is printed, and the
rocket doesn’t get within 20 units of the target, even though it is traveling
more than 3 times the rock’s speed!

11.2. ROCK, PAPER, ROCKET 187

Rocket

Rock

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

FIGURE 11.2.3. Predictive algorithm with rock speed 30

EXERCISES.

1. Experiment with the predictive program and determine the mini-
mum speed the rock must be traveling to guarantee that the rocket does
not get within 10 distance-units of the target.

2. Experiment with different offsets of the rock-launch-point.

3. Try the program where the rocket follows a curved path rather than
a straight line.

4. Consider possible improvements to the predictive algorithm and
program them. Our program uses the first derivative of the rocket mo-
tion (its tangent vector). Consider how one could estimate its second de-
rivative and use that (and the first) to estimate its future location. Hint:
consider how much the rocket’s unit-vector changes between a given call
to the rock-routine and the previous call.

5. Suppose the rocket has random fluctuations in its direction to try to
confuse the rock. These fluctuations must decrease to 0 as the rocket ap-
proaches the target, or it won’t have a chance of hitting the target. Program
this!

CHAPTER 12

Special Functions

“Certain functions appear so often that it is convenient to give
them names. These are collectively called special functions.
There are many examples and no single way of looking at them
can illuminate all examples or even all the important properties
of a single example of a special function.”
— Richard Askey.

12.1. The Gamma Function

In an attempt to define factorials over non-integers, Bernoulli defined
the function

(12.1.1) Γ(z) =
∫ ∞

0
e−tzt−1dt for ℜ(z) > 0

Integration by parts shows that

(12.1.2) Γ(z + 1) = zΓ(z)

Since Γ(1) = 1, an easy induction shows that

Γ(n) = (n − 1)!

for n a positive integer.

Daniel Bernoulli (1700 – 1782) was a Swiss mathematician and physicist
and was one of the many prominent mathematicians in the Bernoulli fam-
ily from Basel. He is particularly remembered for his applications of math-
ematics to mechanics, especially fluid mechanics, and for his pioneering
work in probability and statistics. His name is commemorated in the
Bernoulli’s principle, a particular example of the conservation of energy,
which describes the mathematics of the mechanism underlying the opera-
tion of two important technologies of the 20th century: the carburetor and
the airplane wing.

Maxima implements the Γ-function via the gamma-command. For in-
stance

map(’gamma, [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]) ;

returns
[1, 1, 2, 6, 24, 120, 720, 5040, 40320]

We can plot Γ(x) on the real line via

plot2d (gamma(x) , [x , − 5 , 5] , [y , − 1 0 , 1 0] , [s t y l e ,
[l i n e s , 2 , 5]] , [grid , 1 0 , 2 0]) ;

189

190 12. SPECIAL FUNCTIONS

g
a
m

m
a
(x

)

x

-10

-5

 0

 5

 10

-4 -2 0 2 4

FIGURE 12.1.1. The Γ-function

to get figure 12.1.1.
We also have the Euler Reflection equation

Γ(1 − z)Γ(z) =
π

sin(πz)

from which it is easy to derive the famous equation

Γ(1/2) =
√

π

or (
−1

2

)
! =

√
π

and
1
2

! =
√

π

2
Equation 12.1.2 on the previous page allows us to extend the gamma

function over the whole complex plane, except for zero and negative inte-
gers via

Γ(z) =
Γ(z + 1)

z
and the Euler reflection formula:

(12.1.3) Γ(z) · Γ(1 − z) =
π

sin(πz)

— see [1, chapter 5].
The command

plot3d (cabs (gamma(u+%i *v)) , [u , −5 , 5] , [v , −5 , 5] ,
[z , 0 , 2 0] , [x labe l , " Reals "] , [y label , " Imag "] ,
[grid , 1 0 0 , 1 0 0]) ;

12.1. THE GAMMA FUNCTION 191

-4
-2

 0
 2

 4 -4

-2

 0

 2

 4

 0

 5

 10

 15

 20

Function

Reals

Imag

z

FIGURE 12.1.2. Plot of |Γ(z)|

produces figure 12.1.2.
Maxima also “knows” other functions of the gamma-function that are

used in number-theory.
� bffac (expr, n) — a bigfloat version of the factorial function (i.e.,

gamma(expr+1))
� log_gamma(z) — self-explanatory.
� gamma_incomplete_lower(a, z) =

∫ z
0 e−tat−1dt

� gamma_incomplete(a, z)=
∫ ∞

z e−tat−1dt
� gamma_incomplete_regularized(a,z)

=gamma_incomplete(a, z)/ gamma(a)
� beta(a, b) — The beta function is defined as

gamma(a)*gamma(b)/gamma(a+b)
� psi[n](x) — The derivative of log(gamma(x)) of order n+1. Thus,

psi[0](x) is the first derivative, psi[1](x) is the second derivative,
etc.

EXERCISES.

1. If x is a number and m is a positive integer, recall the falling factorial
or Pochhammer symbols (x)m from chapter 8 on page 143 defined by

(x)m = x · (x − 1) · · · (x − m + 1)

Extend this definition to all complex values of x and m using the gamma
function. Note that, if x and m are integers and m > x, then we get a factor
(x − x) = 0 so the result is 0.

2. Write a Maxima function to compute falling factorials (x)n for all
complex values of x and n.

192 12. SPECIAL FUNCTIONS

3. A simple induction shows that for any positive integer, k,

dkxn

dxk = n(n − 1) · · · (n − k + 1)xn−k

Extend this to arbitrary complex values of k, so one could define (for in-
stance)

d1/2x
dx1/2

4. Compute

d1/2ex

dx1/2

by computing that for each term of its Taylor series. Plot this function and
ex.

12.2. Elliptic integrals and elliptic functions

Elliptic integrals and functions have a long and complex history that
impinges on numerous other areas of mathematics, including complex
analysis, number theory, and algebraic geometry.

The general elliptic integral is anything of the form∫ x

c
R
(

t,
√

P(t)
)

dt

where c is a constant, R(u, v) is a rational function, and P(t) is a polyno-
mial of degree 3 or 4 with no repeated roots. Any elliptic integral can be
transformed into a linear combination of an integral of a rational function
and Legendre elliptic integrals of the first, second, and third kinds — see [48].

Carl Gustav Jacob Jacobi (1804 – 1851) was a German mathematician who
made fundamental contributions to elliptic functions, dynamics, differen-
tial equations, determinants, and number theory. His name is occasionally
written as Carolus Gustavus Iacobus Iacobi in his Latin books, and his first
name is sometimes given as Karl.

We will focus on elliptic integrals and Jacobi’s elliptic functions, which
initially arose in in an effort to parametrize the arc-length of an ellipse. The
incomplete elliptic integral of the first kind is

F(x, k) =
∫ x

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dt√
1 − k2 sin2 t

where 0 ≤ x ≤ 1, 0 ≤ ϕ ≤ π/2, and the quantity 0 ≤ k ≤ 1 is called
the modulus of the elliptic integral. The complete elliptic integral simply has
x = 1 (or ϕ = π/2).

12.2. ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS 193

frictionless pivot

massless rod

massive bob
bob's
trajectory

equilibrium
position

amplitude θ

FIGURE 12.2.1. Pendulum

The incomplete elliptic integral of the first kind is also sometimes writ-
ten

F(ϕ, k) =
∫ sin ϕ

0

dt√
(1 − t2)(1 − k2t2)

This is the form Maxima implements:

e l l i p t i c _ f (phi , m)

where m = k2.
If we type

e l l i p t i c _ f (x , 0)

we get

x

and if we type

e l l i p t i c _ f (x , 1)

we get

log
(

tan
(x

2
+

π

4

))
EXAMPLE 12.2.1. We will discuss an application of the the elliptic inte-

gral of the first kind. Consider the pendulum in figure 12.2.1
The tangential force on the bob perpendicular to the rod is −mg sin θ,

where m is the bob’s mass and g is the acceleration of gravity. This force is
also equal to

m
dvT
dt

= m
d
dt

(
R

dθ

dt

)
= mR

d2θ

dt2

Equating these quantities gives

mR
d2θ

dt2 = −mg sin θ

so the equation of motion becomes

(12.2.1)
d2θ

dt2 +
g
R

sin θ = 0

194 12. SPECIAL FUNCTIONS

Compare this with equation 5.3.2 on page 82 for a harmonic oscillator and
figure 5.3.1 on page 82. The sine-term adds considerable complexity.

Now we multiply by dθ/dt to get(
d2θ

dt2

)
dθ

dt
+

g
R

sin θ
dθ

dt
= 0

and integrate with respect to t to get

1
2

(
dθ

dt

)2
− g

R
cos θ = C

where C is the constant of integration. If we set dθ/dt = 0, we get C =
− g

R cos θ, which means θ = θ0, the pendulum’s initial angle. Our equation
becomes

dθ

dt
=

√
2
(g

R
cos θ − g

R
cos θ0

)
=

√
2g
R

√
cos θ − cos θ0

Now we apply the identity

cos θ = 1 − 2 sin2
(

θ

2

)
to get

dθ

dt
= 2

√
g
R

√
sin2

(
θ0

2

)
− sin2

(
θ

2

)
so

dt
dθ

=
1
2

√
R
g

1√
k2 − sin2

(
θ
2

)
where k = sin(θ0/2). The complete period of the pendulum is

(12.2.2) T = 4 · 1
2

√
R
g
·
∫ θ0

0

dθ√
k2 − sin2

(
θ
2

)
Now we do a u-substitution, setting sin(θ/2) = k sin(u), which implies
that

cos
(

θ

2

)
dθ

2
= k cos(u)du

or

dθ =
2k cos(u)

cos
(

θ
2

) du =
2k
√

1 − sin2(u)√
1 − k2 sin2(u)

du

=
2
√

k2 − sin2(θ/2)√
1 − k2 sin2(u)

du(12.2.3)

12.2. ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS 195

Now we plug equation 12.2.3 on the preceding page into equation 12.2.2 on
the facing page to get the complete elliptic integral of the first kind

(12.2.4) T = 4

√
R
g
·
∫ π/2

0

du√
1 − k2 sin2(u)

where we note that when θ = θ0, k = sin(θ0/2) = sin(θ0/2) sin(u), so
sin(u) = 1, and u = π/2.

The inverse of the elliptic integral of the first kind is the elliptic func-
tion sn(x, k), a generalization of the sine-function. Indeed, sn(x, 0) = sin x.
These were first studied by Jacobi.

Maxima implements these things via

jacobi_sn (u , m) ;

where m = k2.
See figure 12.2.2 on the next page1, which is a plot of the Jacobi ellipse

x2 +
y2

b2 = 1

with b real. The quantities m and b are related via

b2 =
1
m

The twelve Jacobi functions, vw(u,m), are shown, where w, v = s, c, d, n and
any function of the form ww is defined to be 1 for the sake of completeness.
In general

wv(u, m) =
1

vw(u, m)

In figure 12.2.2 on the following page note that

sin ϕ = sn(u, m)

cos ϕ = cn(u, m)

where u is arc-length along the ellipse (from the point (1,0)). This implies
that

sn2(u, m) + cn2(u, m) = 1
for all u, m.

Maxima “knows” some properties of these functions:

jacobi_sn (u , 0) ;

produces sin(u) and typing

jacobi_sn (u , 1) ;

produces tanh(u).
The command

plot2d (jacobi_sn (x , . 9) , [x , 0 , 1 0] , [s t y l e , [l i n e s , 2 , 5]]) ;

1This beautiful diagram was taken from Wikimedia, without attribution.

196 12. SPECIAL FUNCTIONS

FIGURE 12.2.2. Jacobi functions

ja
c
o
b
i_

s
n
(x

,0
.9

)

x

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10

FIGURE 12.2.3. Plot of sn(x, .9)

produces the plot in figure 12.2.3.
Notice that the graph of sn(x, .9) looks like a sine curve that has been

“rounded”.
Figure 12.2.4 on the facing page shows the complementary function.
Other elliptic functions that Maxima implements include

jacobi_dn (u , m) ;
jacobi_ns (u ,m)=1/ jacobi_sn (u ,m) ;
jacobi_sc (u ,m)= jacobi_sn (u ,m)/ jacobi_cn (u ,m) ;
jacobi_cs (u ,m)= jacobi_cn (u ,m)/ jacobi_sn (u ,m) ;
jacobi_nd (u ,m)=1/ jacobi_dn (u , m) ;

12.2. ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS 197

ja
c
o
b
i_

c
n
(x

,0
.9

)

x

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10

FIGURE 12.2.4. Plot of cn(x, .9)

jacobi_ds (u ,m)= jacobi_dn (u , m)/ jacobi_sn (u ,m) ;
jacobi_dc (u ,m)= jacobi_dn (u ,m)/ jacobi_cs (u ,m) ;

Maxima also implements the inverses of all of these functions, although the
inverse of sn(u, m) is technically the elliptic integral of the first kind. Their
names are the word ‘inverse_’ followed by the Maxima name of the func-
tion.

Now we will consider the elliptic integrals of the second

E(ϕ, m) =
∫ ϕ

0

√
1 − m sin2 θdθ =

∫ sin ϕ

0

√
1 − mt2
√

1 − t2
dt

and third kinds

Π(n, φ, m) =
∫ sin φ

0

dt
(1 − nt2)

√
(1 − mt)2(1 − t2)

The number n is called the characteristic and can take on any value. These
are coded into Maxima, respectively, as

e l l i p t i c _ e (phi , m)

and

e l l i p t i c _ p i (n , phi , m)

198 12. SPECIAL FUNCTIONS

EXERCISES.

1. Using elliptic functions, give a parametric plot of an ellipse with
m = .9. Hint: Closely examine figure 12.2.2 on page 196.

2. What’s the period of a pendulum with R = 1 foot,
g = 32 feet/second2, and a starting angle of 45◦?

3. In a pendulum, as the starting angle approaches 180◦ the period
approaches ∞. What is going on?

12.3. Bessel functions

Bessel functions were first defined by Daniel Bernoulli and generalized
by Friedrich Bessel as solutions to Bessel’s differential equation

(12.3.1) x2 d2y
dx2 + x

dy
dx

+ (x2 − α2)y = 0

for a complex number, α, which is called the order of the Bessel function.
The most significant values for α are integer and half-integer values. The
integer values arise from converting the two-dimensional wave equation
(see section 4.6.4 on page 70) to polar or cylindrical coordinates, and the
half-integer values arise from converting it to spherical coordinates.

The general solution to equation 12.3.1 is

AJα(x) + BYα(x)

where Jα(x) and Yα(x) are called, respectively, Bessel functions of the first
and second kind.

Friedrich Wilhelm Bessel (1784 – 1846) was a German astronomer, mathe-
matician, and physicist. He was the first astronomer who determined re-
liable values for the distance from the sun to another star by the method
of parallax. Certain important mathematical functions were named Bessel
functions after Bessel’s death, though they had originally been discovered
by Daniel Bernoulli before being generalized by Bessel.

To see how Bessel’s equation arises, we convert the wave equation into
polar coordinates.

In polar coordinates, (r, θ), we have

∂2ψ

∂x2 +
∂2ψ

∂y2 =
1
r

∂

∂r

(
r

∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2 =
1
c2

∂2ψ

∂t2

We write ψ(r, θ, t) = τ(t)Φ(r, θ) to get

τ
1
r

∂

∂r

(
r

∂Φ
∂r

)
+ τ

1
r2

∂2Φ
∂θ2 = Φ

1
c2

∂2τ

∂t2

or
1

Φr
∂

∂r

(
r

∂Φ
∂r

)
+

1
Φr2

∂2Φ
∂θ2 =

1
τc2

∂2τ

∂t2 = −λ

12.3. BESSEL FUNCTIONS 199

where λ is a constant (the only way a function of t could equal a function
of other, independent, variables). So we get

d2τ

dt2 + λτ = 0

1
r

∂

∂r

(
r

∂Φ
∂r

)
+

1
r2

∂2Φ
∂θ2 + λΦ = 0

Now, we write Φ(r, θ) = R(r)Ξ(θ) and get

Ξ
1
r

∂

∂r

(
r

∂R
∂r

)
+ R

1
r2

∂2Ξ
∂θ2 + λRΞ = 0

and dividing by R(r)Ξ(θ) and multiplying by r2 gives

r
R

∂

∂r

(
r

∂R
∂r

)
+

1
Ξ

∂2Ξ
∂θ2 + λr2 = 0

or
r
R

∂

∂r

(
r

∂R
∂r

)
+ λr2 = − 1

Ξ
∂2Ξ
∂θ2

Again, we are faced with a situation where a function of one variable is
equal to one of another, so they both equal the same constant

r
R

d
dr

(
r

dR
dr

)
+ λr2 = κ

1
Ξ

d2Ξ
dθ2 = −κ

The top equation is equal to

r2 d2R
dr2 + r

dR
dr

+ Rλr2 = κR

or

r2 d2R
dr2 + r

dR
dr

+ R(λr2 − κ) = 0

A change of scale (r̄ = r
√

λ) allows us to get rid of λ, and we get Bessel’s
differential equation. Maxima implements Bessel functions. The first kind
is called bessel_j(v, z) with mathematical notation Jv(z). It can be defined
via

Jv(z) =
∞

∑
k=0

(−1)k2v−2kzv+2k

k!Γ(v + k + 1)

or an integral representation

Jv(z) =
1
π

∫ π

0
cos (vt − z sin t) dt

If we type

plot2d ([b e s s e l _ j (0 , x) , b e s s e l _ j (1 , x) , b e s s e l _ j (2 , x)] ,
[x , 0 , 1 0] , [s t y l e , [l i n e s , 2 , 5] ,
[points , 1 , 4 , 5] , [l i n e s , 2 , 1]]) ;

200 12. SPECIAL FUNCTIONS

x

bessel_j(0,x)
bessel_j(1,x)
bessel_j(2,x)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

FIGURE 12.3.1. First three Bessel J-functions

x

bessel_y(0,x)
bessel_y(1,x)
bessel_y(2,x)

-4

-3

-2

-1

 0

 1

 1 2 3 4 5 6 7 8 9 10

FIGURE 12.3.2. First three Bessel Y-functions

gives us figure 12.3.1.
The second kind is called bessel_y(v, z) with mathematical notation

Yv(z). These functions have a singularity at 0, going to −∞. We can graph
them

plot2d ([besse l_y (0 , x) , besse l_y (1 , x) , besse l_y (2 , x)] ,
[x , . 1 , 1 0] , [y , − 4 , 1] , [s t y l e , [l i n e s , 2 , 5] ,
[points , 1 , 4 , 5] , [l i n e s , 2 , 1]]) ;

to get figure 12.3.2.
These are related to the J-Bessel functions via the equation

Yk(z) =
cos(πk)Jk(z)− J−k(z)

sin(πk)

12.4. AIRY FUNCTIONS 201

when k is not an integer. When it is (an integer), take the limit as k ap-
proaches its integer value.

Bessel functions are used for

� Electromagnetic waves in a cylindrical waveguide.
� Pressure amplitudes of inviscid rotational flows.
� Heat conduction in a cylindrical object.
� Modes of vibration of a thin circular or annular acoustic mem-

brane or thicker plates such as sheet metal.
� Solutions to the radial Schrödinger equation (in spherical and

cylindrical coordinates) for a free particle.
� Solving for patterns of acoustical radiation.
� Frequency-dependent friction in circular pipelines.
� Dynamics of floating bodies.
� Diffraction from helical objects, including DNA.
� Probability density function of product of two normally

distributed random variables.

12.4. Airy functions

The two linearly independent Airy functions Ai(x) and Bi(x) are solu-
tions to Airy’s differential equation

d2y
dx2 − xy = 0

These functions have the interesting property that they switch from being
oscillatory when x < 0 to being exponential when x > 0. Their Maxima
definitions are, respectively,

a i r y _ a i (x)

and

ai ry_bi (x)

Their “switching” behavior is clear from figure 12.4.1 on the following
page.

For real values of x we have the integral formulas

Ai(x) =
1
π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt

Bi(x) =
1
π

∫ ∞

0

(
e−t3/3+xt + sin

(
t3

3
+ xt

))
dt

Maxima also implements first derivatives of the Airy functions

airy_dai (x)

and

airy_dbi (x)

202 12. SPECIAL FUNCTIONS

x

airy_ai(x)
airy_bi(x)

-1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1 0 1 2

FIGURE 12.4.1. The Airy Functions

The Airy function is the solution to the time-independent Schrödinger
equation for a particle confined within a triangular potential well and for a
particle in a one-dimensional constant force field.

Sir George Biddell Airy (1801 – 1892) was an English mathematician and as-
tronomer, and the seventh Astronomer Royal from 1835 to 1881. His many
achievements include work on planetary orbits, measuring the mean den-
sity of the Earth, a method of solution of two-dimensional problems in solid
mechanics and, in his role as Astronomer Royal, establishing Greenwich as
the location of the prime meridian.

Forming the Fourier transform of Airy’s differential equation gives us
the Fourier transform of Ai(x):

F (Ai(x))(s) = e(2πs)3/3

12.5. Logarithmic and exponential integrals

We begin with the logarithmic integral, defined via

(12.5.1) li(x) =
∫ x

0

dt
log t

The Maxima command for this is

e x p i n t e g r a l _ l i (x)

The command

plot2d (e x p i n t e g r a l _ l i (x) , [x , 0 , 5] , [y , − 5 , 5]) ;

produces the plot in figure 12.5.1 on the next page.

12.5. LOGARITHMIC AND EXPONENTIAL INTEGRALS 203

e
x
p
in

te
g
ra

l_
li(

x
)

x

-4

-2

 0

 2

 4

 0 1 2 3 4 5

FIGURE 12.5.1. The li-function

The function 1/ log(x) has a singularity at x = 1, in which case, we
interpret equation 12.5.1 on the facing page as the Cauchy principal value:

(12.5.2) li(x) = lim
ϵ→0+

(∫ 1−ϵ

0

dt
log t

+
∫ x

1+ϵ

dt
log t

)
whenever x > 1.

We also have

Li(x) =
∫ x

2

dt
log t

for x ≥ 2, which avoids the singularity at x = 1. We have the relation

Li(x) = li(x)− li(2)

Note: the Maxima documentation incorrectly states that

e x p i n t e g r a l _ l i (x)

computes Li(x), but it actually2 computes li(x).
We also have the exponential integrals:

(1) There is the integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt

and the Maxima command is

e x p i n t e g r a l _ e i (x)

where the singularity at t = 0 is handled via the Cauchy principal
value (as in equation 12.5.2). This function is related to li(x) via

(12.5.3) li(ex) = Ei(x)

and

2As its name implies.

204 12. SPECIAL FUNCTIONS

e
x
p
in

te
g
ra

l_
e
i(
x
)

x

-4

-2

 0

 2

 4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

FIGURE 12.5.2. The Ei-function

plot2d (e x p i n t e g r a l _ e i (x) , [x , − 1 , 3])

produces figure 12.5.2. Note,

e x p i n t e g r a l _ l i (x)

can produce incorrect results if x is a complex number3. In this
case, equation 12.5.3 on the previous page gives the correct value.

(2) The integral

E1(x) =
∫ ∞

x

e−t

t
dt

with a Maxima command

expintegral_e1 (x)

that produces figure 12.5.3 on the facing page.

(3) The sine integral

Si(x) =
∫ x

0

sin t
t

dt

coded in Maxima as

e x p i n t e g r a l _ s i (x)

which is plotted in figure 12.5.4 on the next page. It is well-known
that

lim
x→∞

Si(x) =
π

2

3Maxima documentation states that it’s only defined for real values of x > 1.

12.5. LOGARITHMIC AND EXPONENTIAL INTEGRALS 205

e
x
p
in

te
g
ra

l_
e
1
(x

)

x

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5

FIGURE 12.5.3. E1-function

e
x
p
in

te
g
ra

l_
s
i(
x
)

x

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

FIGURE 12.5.4. The sine-integral

It turns out that the sine-integral is closely related to Gibbs
phenomena, mentioned on page 58. The size of the jump (overshoot
or undershoot) is approximately 9% and is exactly given by

Si(π)

π
− 1

2
= 0.08948987223608362 . . .

called the Wilbraham-Gibbs constant — see [20]. Incidentally, the
phenomena was discovered by Wilbraham fifty years before Gibbs
mentioned it, but it’s named after Gibbs (as per mathematical tra-
dition!).

206 12. SPECIAL FUNCTIONS

e
x
p
in

te
g
ra

l_
c
i(
x
)

x

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10

FIGURE 12.5.5. The cosine-integral

(4) The cosine-integral

Ci(x) = −
∫ ∞

x

cos t
t

dt

coded in Maxima as

e x p i n t e g r a l _ c i (x)

and plotted in figure 12.5.5.

(5) The hyperbolic sine integral:

Shi(x) =
∫ x

0

sinh t
t

dt

coded in Maxima via

expintegral_shi (x)

(6) And the hyperbolic cosine integral:

Chi(x) = γ + log x +
∫ x

0

cosh t − 1
t

dt

coded in Maxima via

expintegral_chi (x)

Here γ is the Euler–Mascheroni constant, coded in Maxima as
%gamma.

12.6. LAMBERT FUNCTIONS 207

EXERCISES.

1. Write a function to compute li(x) from equation 12.5.2 on page 203
(i.e., without using Maxima’s expintegral_li-function).

2. Find a relation between the functions E1(x), Si(x), and Ci(x).

12.6. Lambert functions

The Lambert-W function is the inverse function to

xex

— which is sometimes called the product logarithm, because the conven-
tional logarithm is the inverse function to ex. Another name for it is the
omega function. Like the logarithm, the W-function has many branches, de-
noted Wn(z), and

y = xex

if and only if
x = Wn(y)

for some integer n. Unlike the logarithm, these branches are not equally
spaced.

Two of them, W0(z) and W−1(z) (often written Wm(z)) are real-valued
for real values of z and the others are complex valued. If z is real-valued,
then W0(z) is well-defined for 0 ≤ z, and W−1(z) is defined for −1/e ≤ z ≤
0.

The command

lambert_w (x)

computes W0(x) and the command

plot2d (lambert_w (x) , [x , 0 , 1 0]) ;

produces the plot in figure 12.6.1 on the following page.
The other branches, Wk(z), of the Lambert function are given by the

command

generalized_lambert_w (k , z)

where

generalized_lambert_w (0 , z)= lambert_w (z)

The command

plot2d (generalized_lambert_w (−1 , z) , [z,−1/%e , 0])

produces the plot in figure 12.6.2 on the next page.
The Lambert function has many applications in physics — see the pa-

per [45].

208 12. SPECIAL FUNCTIONS

la
m

b
e
rt

_
w

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10

FIGURE 12.6.1. The Lambert W function

g
e
n
e
ra

liz
e
d
_
la

m
b
e
rt

_
w

(-
1
,z

)

z

-12

-10

-8

-6

-4

-2

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

FIGURE 12.6.2. The Lambert function W−1(z)

Johann Heinrich Lambert (1728 – 1777) was a polymath from the Republic
of Mulhouse (today part of the province of Alsace, in France), who made
important contributions to the subjects of mathematics, physics (particu-
larly optics), philosophy, astronomy, and map projections.

The Lambert functions all satisfy the differential equation

dW(z)
dz

=
W(z)

z(1 + W(z))
=

1
z + eW(z)

which implies that it has applications to Michaelis–Menten kinetics involv-
ing the biochemistry of enzyme-catalysed reactions of one substrate and
one product. it also has applications to ecology and evolution — see [27].

12.6. LAMBERT FUNCTIONS 209

The Lambert function also has applications to the problem of the infinite
power tower:

y = xxx . . .

One might ask what this even means. Define a sequence

{tk(x)}

by

t1(x) = x

tk+1(x) = xtk(x) for k an integer ≥ 1

and

(12.6.1) y = t∞(x) = lim
k→∞

tk(x)

if this limit exists.
Since the tower is infinite, we have

t∞+1(x) = t∞(x)

or

(12.6.2) y = xy = ey log(x)

so that
ye−y log(x) = 1

If we multiply by − log(x), we get

− log(x)ye−y log(x) = − log(x)

so
− log(x)y = W(− log(x))

and

(12.6.3) y = −W(− log(x))
log(x)

= t∞(x)

Surprisingly, this limit exists for many values of x.
If we take the 1/y power of equation 12.6.2, we get

(12.6.4) y1/y = x

which shows that equation 12.6.3 actually solves for y satisfying
equation 12.6.4, given x.

210 12. SPECIAL FUNCTIONS

EXERCISES.

1. Compute t∞(
√

2) as in equations 12.6.1 on the previous page and
12.6.3.

2. Estimate the largest finite value of d such that t∞(
√

2 + d) is well-
defined. Hint: start with d = .01. If the sequence {tk(x)} diverges, equa-
tion 12.6.3 on the preceding page will give complex numbers for t∞(x). What
is the limiting value (i.e., the largest finite value you can get) for t∞(x)?

3. If we define

tow (x) := − lambert_w (− log (x)) / log (x) ;

we can compute

x : tow (3)

Why is this well-defined?

CHAPTER 13

The Zeta function

“God may not play dice with the universe, but something strange
is going on with prime numbers. “
— taken from a talk given by Carl Pomerance on the Erdős-Kac
theorem, San Diego in January 1997.

13.1. Properties of the ζ-function

In this section, we will discuss Riemann’s groundbreaking research (see
[35] and the English translation, [49]) on Euler’s Zeta function — a function
so special it rates its own chapter. This involves the theory of functions of
a complex variable, so the reader needs to be familiar with that — see [1].

Georg Friedrich Bernhard Riemann (1826–1866) was an influential German
mathematician who made contributions to many fields including analysis,
number theory and differential geometry. Riemann’s work in differential
geometry provided the mathematical foundation for Einstein’s Theory of
General Relativity (see [32]).

It all begins with Euler’s zeta-function:

(13.1.1) ζ(s) =
∞

∑
n=1

1
ns

Maxima has a command to compute this

zeta (x)

and this gives exact values when they are known, so

zeta (2)

gives
π2

6
Riemann first noted ∫ ∞

0
e−nxxs−1dx =

Γ(s)
ns

which you can confirm using Maxima (and answering questions about n
and s). It follows that∫ ∞

0

(
e−x + e−2x + e−3x + · · ·

)
xs−1dx = Γ(s)

(
1
1s +

1
2s +

1
3s + · · ·

)

211

212 13. THE ZETA FUNCTION

ℜ{z}

ℑ{z}

ϵ

−ϵ

FIGURE 13.1.1. The contour, C

The infinite series

e−x + e−2x + e−3x + · · · = e−x +
(
e−x)2

+
(
e−x)3

+ · · ·

is the geometric series equal to

e−x 1
1 − e−x =

ex

ex
e−x

1 − e−x =
1

ex − 1

or (what amounts to the same thing)

1
1 − e−x − 1

so we get

Γ(s)ζ(s) =
∫ ∞

0

xs−1

ex − 1
dx

It’s interesting that the mere subtraction of 1 in the denominator transforms
this integral from Γ(s) to Γ(s)ζ(s).

Next, Riemann extends the definition of ζ(s) to the whole complex
plane by evaluating the integral∫

C

(−z)s−1

ez − 1
dz

where C is the contour in figure 13.1.1, and the branch of log(−z) used
in calculating (−z)s−1 is the one where the logarithm is real for negative
values of z.

We will ultimately take the limit as ϵ → 0 and the circle around the
origin has a radius that goes to 0 as well. We split the contour, C, into three
parts. Note that −z = e±πi · z and our three parts are

13.1. PROPERTIES OF THE ζ-FUNCTION 213

(1) γ1, the path above the real axis from ∞ to ϵ. Since the argument of
z goes from −π to +π, we will start with −z = e−πiz∫

γ1

(−z)s−1

ez − 1
dz =

∫ ϵ

∞
e−(s−1)πi zs−1

ez − 1
dz

= e−sπieπi
∫ ϵ

∞

zs−1

ez − 1
dz

= e−sπi
∫ ∞

ϵ

zs−1

ez − 1
dz

(2) γ2, the small circle around the origin. In this case

1
ez − 1

∼ 1
z

as the circle shrinks to the origin, so

zs−1

ez − 1
∼ zs−2

which has a residue of 0 unless s = 1 — but we already know ζ(s)
has a singularity at s = 1.

(3) γ3, the path below the real axis from ϵ to ∞. Here −z = e+πiz
(since we have wrapped around the origin in a positive direction)
so ∫

γ3

(−z)s−1

ez − 1
dz =

∫ ∞

ϵ
e+(s−1)πi zs−1

ez − 1
dz

= esπie−πi
∫ ∞

ϵ

zs−1

ez − 1
dz

= −esπi
∫ ∞

ϵ

zs−1

ez − 1
dz

We conclude (as Riemann did) that

(e−πis − eπis)Γ(s)ζ(s) =
∫

C

(−z)s−1

ez − 1
dz

or

(13.1.2) 2 sin(πs)Γ(s)ζ(s) = i
∫

C

(−z)s−1

ez − 1
dz

for s ̸= 1. Note that sin(πs)Γ(s) is finite for s < 0. Even though Γ(s) has
singularities at all negative integers, sin(πs) vanishes for all integers, so
it “cancels out” these singularities. The Euler reflection formula 12.1.3 on
page 190 shows that

2 sin(πs)Γ(s) =
2π

Γ(1 − s)

which implies that it’s also nonzero for s < 0.
If we traverse the contour, C, in a negative direction, this inverts the sign

of the result. If we do this and invert the interior of this contour (i.e., regard
it as enclosing the exterior of the narrow strip around the positive real-axis)
the integral is inverted again — i.e., its original value is restored.

214 13. THE ZETA FUNCTION

We get a formula

2 sin(πs)Γ(s)ζ(s) = i
∫
−C

(−z)s−1

ez − 1
dz

where −C is the contour C traversed in the opposite direction and −C rep-
resents the result of regarding it as enclosing the entire complex plane out-
side the narrow strip around the positive real-axis.

Evaluating this integral is straightforward, using the calculus of
residues. Nonzero residues occur when s = 2nπi where n is a nonzero
integer, and they are equal to (−2nπi)s−1 · (−2πi).

We get the formula, well-defined for s < 0:

2 sin(πs)Γ(s)ζ(s) = (2π)s
∞

∑
n=1

ns−1
(

is−1 + (−i)s−1
)

which is a kind of complement to equation 13.1.1 on page 211. It immedi-
ately implies that ζ(−2n) = 0 for n a positive integer. At this point, Rie-
mann observed that the Euler reflection formula for the gamma function
(equation 12.1.3 on page 190) implies one for the zeta function:

(13.1.3) Γ
(s

2

)
π− s

2 ζ(s) = Γ
(

1 − s
2

)
π− 1−s

2 ζ(1 − s)

which we can call the Riemann reflection formula. Note that when s = 1/2,
both sides of this equation become identical. This suggested to Riemann
that the line ℜ(s) = 1/2 is critical.

Starting with1 ∫ ∞

0
e−n2πxx

s
2−1dx =

1
ns Γ

(s
2

)
π− s

2

so that

(13.1.4) Γ
(s

2

)
π− s

2 ζ(s) =
∫ ∞

0
ψ(x)x

s
2−1dx

where

ψ(x) =
∞

∑
n=1

e−n2πx

for x > 0.
Riemann then cited the remarkable result

(13.1.5) 2ψ(x) + 1 = x−1/2
(

2ψ

(
1
x

)
+ 1
)

and gave a reference to a paper of Jacobi which doesn’t contain this for-
mula. It appears at the bottom of page 307 in another paper of Jacobi (see
[23]) which attributes the result to unpublished work of Poisson. See ap-
pendix C on page 233 for a detailed proof.

We rewrite the integral in equation 13.1.4 as

(13.1.6) Γ
(s

2

)
π− s

2 ζ(s) =
∫ ∞

1
ψ(x)x

s
2−1dx +

∫ 1

0
ψ(x)x

s
2−1dx

1You can easily check this with Maxima!

13.1. PROPERTIES OF THE ζ-FUNCTION 215

and we rewrite equation 13.1.5 on the preceding page as

(13.1.7) ψ(x) = x−1/2
(

ψ

(
1
x

)
+

1
2

)
− 1

2

and use it to reformulate the term from 0 to 1 in equation 13.1.6 on the
facing page as∫ 1

0
ψ(x)x

s
2−1dx =

∫ 1

0

(
x−1/2

(
ψ

(
1
x

)
+

1
2

)
− 1

2

)
x

s
2−1dx

=
∫ 1

0
x−1/2x

s
2−1ψ

(
1
x

)
dx

+
∫ 1

0
x

s
2−1

(
x−1/2

2

)
dx −

∫ 1

0
x

s
2−1 1

2
dx

so we get

Γ
(s

2

)
π− s

2 ζ(s) =
∫ ∞

1
ψ(x)x

s
2−1dx +

∫ 1

0
ψ

(
1
x

)
x

s−3
2 dx

+
1
2

∫ 1

0

(
x

s−3
2 − x

s
2−1
)

dx

Now we do a u-substitution on the second of these three terms on the right

u =
1
x

so

dx = − 1
u2 du

∫ 1

0
ψ

(
1
x

)
x

s−3
2 dx = −

∫ 1

∞
ψ(u)u−(s−3

2)u−2du

=
∫ ∞

1
ψ(u)u

3−s
2 −2du

=
∫ ∞

1
ψ(u)u− 1+s

2 du

and we finally get (replacing u in the integral above by x)

Γ
(s

2

)
π− s

2 ζ(s) =
1

s(s − 1)
+
∫ ∞

1
ψ(x)

(
x

s
2−1 + x−

1+s
2

)
dx

Now, Riemann sets s = 1
2 + ti and

(13.1.8) Γ
(s

2

)
π− s

2 ζ(s)(s − 1) = ξ(t)

so that the line ℜ(s) = 1
2 ⊂ C gets transformed to the real axis and Maxima

easily computes this last transformation.

z : x ^(s /2−1)+x^(−(1+ s) / 2) ;

and

subst (1/2+ t *%i , s , z) ;

216 13. THE ZETA FUNCTION

gives

x
%i·t+ 1

2
2 −1 + x

−%i·t− 3
2

2

Now, we type

assume (x > 0) ;

and

rectform (z) ;

gives

2 cos
(

t log (x)
2

)
x

3
4

We ultimately get

(13.1.9) ξ(t) =
1
2
−
(

t2 +
1
4

) ∫ ∞

1
ψ(x)x−

3
4 cos

(
t
2

log(x)
)

dx

Now we type

i n t e g r a t e ((t ^2+1/4)* x ^(−3/4)* cos ((t /2)* log (x)) , x) ;

to get

4
(

t2 + 1
4

)
x

1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
4t2 + 1

and

ratsimp (%)

gives

x
1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
which means we can integrate the right side of equation 13.1.9 by parts to
get

ξ(t) =
1
2
+
∫ ∞

1
ψ′(x)x

1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
dx

+ ψ(1)

Now we write x1/4 = x3/2 · x−5/4 and integrate by parts a second time.

i n t e g r a t e (x ^(−5/4)* (2* t * s i n ((t * log (x)) / 2)
+cos ((t * log (x)) / 2)) , x) ;

gives

4

2t sin
(

t log (x)
2

)
− cos

(
t log (x)

2

)
(4t2 + 1) x

1
4

+
2t
(
− sin

(
t log (x)

2

)
− 2t cos

(
t log (x)

2

))
(4t2 + 1) x

1
4


and

expand (%)

13.1. PROPERTIES OF THE ζ-FUNCTION 217

gives

−
16t2 cos

(
t log (x)

2

)
4t2x

1
4 + x

1
4

−
4 cos

(
t log (x)

2

)
4t2x

1
4 + x

1
4

A final

ratsimp (%)

gives

−
4 cos

(
t log (x)

2

)
x

1
4

So our second integration by parts gives

ξ(t) =
1
2
+ ψ(1) + ψ′(1) + 4

∫ ∞

1

d
dx

(
x

3
2 ψ′(x)

)
x−

1
4 cos(t log(x)/2)dx

Differentiating equation 13.1.7 on page 215 by x (and plugging in x = 1)
gives

1
2
+ ψ(1) + ψ′(1) = 0

so

(13.1.10) ξ(t) = 4
∫ ∞

1

d
dx

(
x

3
2 ψ′(x)

)
x−

1
4 cos(t log(x)/2)dx

It’s interesting that, in his paper [35], Riemann goes from equation 13.1.9
on the preceding page to equation 13.1.10 in a single step2.

This is an entire function of t (i.e., no singularities) and Riemann conjec-
tured that all of its zeroes lie on the real line. This is equivalent to saying all
of the zeroes of ζ(z) that aren’t of the form −2n for n ∈ Z+ lie on the line
ℜ(z) = 1

2 — which is the famous Riemann hypothesis. No one has found a
counterexample to it or succeeded in proving it. Experiments have verified
it up to t < 12, 363, 153, 437, 138.

Since this is an entire function, Riemann conjectured that it can be writ-
ten as an “infinite polynomial”

(13.1.11) ξ(t) = ξ(0)
∞

∏
i=1

(
1 − t

ρi

)
where the ρi run over all the zeroes of ξ(t). Although this formula wasn’t
rigorous at the time, Weierstrass later proved that such infinite polynomials
could exist and equal entire functions — under the right conditions. Later,
Hadamard proved that the right conditions exist in this case, so Riemann’s
formula is correct.

Since ξ(t) is actually a function of t2, every zero, ρ, has a complemen-
tary one, −ρ, we usually write formula 13.1.11 as

(13.1.12) ξ(t) = ξ(0)
∞

∏
i=1

(
1 − t

ρi

)(
1 − t

−ρi

)
= ξ(0)

∞

∏
i=1

(
1 − t2

ρ2
i

)
2Isn’t it obvious?

218 13. THE ZETA FUNCTION

13.2. A “formula” for prime numbers

Recall Euler’s original formula for the Zeta function, equation 13.1.1 on
page 211 for x > 1, which he immediately rewrote as

(13.2.1) ζ(x) = ∏
p prime

1
1 − p−x

The way to see this is to recall the infinite series

1
1 − p−x = 1 + p−x + p−2x + · · ·

= 1 + p−x + (p2)−x · · ·
The product

∏
p prime

(
1 + p−x + (p2)−x · · ·

)
will be a sum of terms of the form

1(
pn1

1 · · · pnk
k
)x

with all possible primes raised to all possible powers, i.e. the series in equa-
tion 13.1.1 on page 211.

If we take the logarithm of equation 13.2.1, we get

log ζ(x) = − ∑
p prime

log(1 − p−x)

and plug in the Taylor series3 for log(1 − p−x) to get

log ζ(x) = ∑
p prime

p−x +
p−2x

2
+

p−3x

3
· · ·

Now we define a function that counts primes

π(x) =

{
number of primes < x if x is not a prime
1/2 + number of primes < x if x is a prime

(13.2.2)

This is a discontinuous function whose value at each jump-point is the mean
of the value before the jump and the one after.

Now define

(13.2.3) R(x) = π(x) +
π(x1/2)

2
+

π(x1/3)

3
+ · · ·

Note that

p−x = x
∫ ∞

p
s−x−1ds

p−2x = x
∫ ∞

p2
s−x−1ds

etc.

3For instance, type taylor(log(1-s),s,0,20);

13.2. A “FORMULA” FOR PRIME NUMBERS 219

so we conclude that
log ζ(x)

x
=
∫ ∞

1
R(s)s−x−1ds

After several steps using Fourier transforms, Riemann got

R(x) =
1

2πi

∫ a+i∞

a−i∞

log ζ(s)
s

xsds

Now we use formulas from the preceding section to estimate log ζ(s)/s,
namely equations 13.1.8 on page 215 and 13.1.12 on page 217.

(13.2.4) log ζ(s) = log ξ(s)− log Γ
(s

2

)
+

s
2

log(π)− log(s − 1)

If we try to integrate this in a straightforward fashion, several terms in the
integral diverge (particularly the term s

2 log(π)). We choose to integrate by
parts: assuming that xs was a derivative of something with respect to s.
Note that

i n t e g r a t e (x^s , s) ;

produces
xs

log (x)
Since

lim
T→±∞

log ζ(a + iT)
(a + iT)

xa+iT = 0

since xa+iT oscillates as T → ∞ and log ζ(a + iT) remains bounded, so the
denominator kills off the fraction.

It follows that integrating by parts gives

(13.2.5) R(x) = − 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log ζ(s)

s

)
xsds

We will start by computing

− 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log(s − 1)

s

)
xsds

since it is probably the largest term. We compute

G(β) = − 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log(s/β − 1)

s

)
xsds

and consider the limit as β → 1. This integral is well-defined if a > ℜ(β)
because ∣∣∣∣ d

ds

(
log(s/β − 1)

s

)∣∣∣∣ = ∣∣∣∣ 1
s (s − β)

− log (s − β)

s2

∣∣∣∣
≤ 1

|s (s − β) | +
| log (s − β)|

|s|2

which are integrable. We can differentiate G(β) with respect to β:

G′(β) =
1

2πi log x

∫ a+i∞

a−i∞

d
ds

(
1

β (s − β)

)
xsds

220 13. THE ZETA FUNCTION

Now integration by parts gives

G′(β) = − 1
2πi

∫ a+i∞

a−i∞

1
β (s − β)

xsds

This resists brute-force efforts to integrate it (i.e., plug in s = a + iT, and
integrate with T running from −∞ to ∞). We use a bit of finesse: Regard the
path from a − i∞ to a + i∞ as a circle on the Riemann sphere. It encloses
the part of C to the left of it, i.e. the half plane ℜ(z) < a. The integral is
determined by its residue at the singularity s = β (see [1] for information on
the Residue Theorem). We get

G′(β) =

{
xβ

β =
∫ x

0 uβ−1du if a > ℜ(β)

0 if a < ℜ(β)

So

G(β) =
∫ {∫ x

0
uβ−1du

}
dβ

=
∫ x

0

{∫
uβ−1dβ

}
du

=
∫ x

0

{
uβ−1

log u

}
du now set v = uβ

=
1
β

∫ xβ

0

dv
log v1/β

=
∫ xβ

0

dv
log v

We get4

F(x) = li(xβ) + constant(x)

Riemann then argues that this constant is identically 0. If β = 1 , we get the
statement of the Prime Number Theorem

π(x) ∼ li(x)

Now we can introduce the remaining terms of equation 13.2.4 on the
previous page into equation 13.2.5 to get

R(x) = li(x)− ∑
ξ(ρ)=0

(
li
(

x
1
2+iρ

)
+ li

(
x

1
2−iρ

))
+
∫ ∞

x

du
(u2 − 1)u log u

+ log ξ(0)

We can plot this function, using table on the facing page of the first few
values of ρ. The following function uses this table:

4If we integrate it the other way, i.e. as the integral of n^beta/beta, we get -
gamma_incomplete(0,-beta*log(x)), which equals li(xβ).

13.2. A “FORMULA” FOR PRIME NUMBERS 221

14.134725
21.022039
25.010857
30.424876
32.935061
37.586178
40.918719
43.327073
48.005150
49.773832

TABLE 13.2.1. First few zeros of ξ(t)

zeros : matrix (
[1 4 . 1 3 4 7 2 5 0 , 2 1 . 0 2 2 0 3 9 , 2 5 . 0 1 0 8 5 7 , 3 0 . 4 2 4 8 7 6 ,
3 2 . 9 3 5 0 6 1 , 3 7 . 5 8 6 1 7 8 , 4 0 . 9 1 8 7 1 9 , 4 3 . 3 2 7 0 7 3 ,
4 8 . 0 0 5 1 5 0 , 4 9 . 7 7 3 8 3 2]
) ;

R(x) : = block ([accum : e x p i n t e g r a l _ l i (x)] ,
for i : 1 step 1 thru 10 do (

accum : accum−
expand (f l o a t (e x p i n t e g r a l _ e i (

log (x)*(1/2+% i * zeros [1 , i])))
+ f l o a t (e x p i n t e g r a l _ e i (

log (x)*(1/2 −% i * zeros [1 , i]))))
) ,

r e a l p a r t (accum)
)

The command

plot2d (R(x) , [x , 2 , 1 0 0])

produces the plot in figure on the next page. It is well-known that there are
25 primes < 100, so the plot is fairly accurate5.

The reader will doubtless have several questions:

(1) why do we have expintegral_ei? This is because expintegral_li
produces incorrect results for complex arguments, so we use equa-
tion 12.5.3 on page 203. It’s also more efficient to compute

log(x) · (1/2 + i · zeros1,i)

than
log
(

x1/2+i·zeros1,i
)

5It’s counting powers of primes as well as primes themselves.

222 13. THE ZETA FUNCTION

x

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

FIGURE 13.2.1. Plot of R(x)

(2) Why do we have expand and float? This is because Maxima wants
to do exact symbolic computations. We have to force it to do nu-
meric computations.

(3) R(x), as defined above counts primes and powers of primes. How
do we get a formula that only counts primes6? This is answered
below.

Recall equations 13.2.2 on page 218 and 13.2.3 on page 218. The Möbius
Inversion Theorem (see [25]) states that we can invert equation 13.2.3 on
page 218 to get

(13.2.6) π(x) =
∞

∑
k=1

µ(k)
R(x1/k)

k

where µ(k) is the Möbius function, defined by

µ(k) =

{
0 if k is divisible by the square of any prime
(−1)ℓ if k = p1 · · · pℓ where they are all distinct primes

Maxima implements the Möbius function via the command

moebius (x)

August Ferdinand Möbius (1790–1868) was a German mathematician and
astronomer popularly known for his discovery of the Möbius strip (al-
though he made many other contributions to mathematics, including
Möbius transformations, the Möbius function in combinatorics and the
Möbius inversion formula).

In our case we can define

6I.e., an equation for primes!

13.2. A “FORMULA” FOR PRIME NUMBERS 223

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

FIGURE 13.2.2. Approximate π(x)

pi (x) : =R(x) −R(x ^(1/2))/2 −R(x ^(1/3))/3
−R(x ^(1/5))/5+R(x ^(1/6))/6

and (see section F.5 on page 262) the command

draw (
gr2d (l ine_width =2 , c o l o r =black ,

e x p l i c i t (
pi (x) ,
x , 2 , 2 0

) , l i n e _ t y p e =dots ,
parametr ic (3 , t , t , 0 , 8) ,
parametr ic (5 , t , t , 0 , 8) ,
parametr ic (7 , t , t , 0 , 8) ,
parametr ic (1 1 , t , t , 0 , 8) ,
parametr ic (1 3 , t , t , 0 , 8) ,
parametr ic (1 7 , t , t , 0 , 8) ,
parametr ic (1 9 , t , t , 0 , 8)

)
) ;

produces figure 13.2.2, which jumps every time it passes a prime.
We can also plot this to 100 to get figure 13.2.3 on the following page,

which correctly estimates the number of primes < 100 as 25.

224 13. THE ZETA FUNCTION

x

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

FIGURE 13.2.3. First 100 primes (approximately)

EXERCISES.

1. For a given value of x, show that equation 13.2.3 on page 218 and
equation 13.2.6 on page 222 are finite sums.

2. Verify the The Möbius Inversion Theorem by plugging
equation 13.2.3 on page 218 into equation 13.2.6 on page 222.

APPENDIX A

Gröbner basis for the robotic motion problem

(1) 3*w^2−1
(2) x−y
(3) 576*b_2^4*y^4+576*b_2^4*y^2*z^2+144*b_2^4*z^4+192*b_2^2*

y^6+768*b_2^2*y^5*z+96*b_2^2*y^4*z^2−768*b_2^2*y^4+768*
b_2^2*y^3*z^3−768*b_2^2*y^3*z−48*b_2^2*y^2*z^4−576*b_2
^2*y^2*z^2+192*b_2^2*y*z^5−384*b_2^2*y*z^3−24*b_2^2*z
^6−96*b_2^2*z^4+144*y^8+288*y^6*z^2−384*y^6−384*y^5*z
+216*y^4*z^4−480*y^4*z^2+256*y^4−384*y^3*z^3+512*y^3*z
+72*y^2*z^6−192*y^2*z^4+384*y^2*z^2−96*y*z^5+128*y*z
^3+9*z^8−24*z^6+16*z^4

(4) 48*b_3*y^5+24*b_3*y^4*z+48*b_3*y^3*z^2−64*b_3*y^3+24*b_3
*y^2*z^3−96*b_3*y^2*z+12*b_3*y*z^4−48*b_3*y*z^2+6*b_3*z
^5−8*b_3*z^3+144*b_2^3*y^4*w+144*b_2^3*y^2*z^2*w+36*b_2
^3*z^4*w+120*b_2*y^6*w+192*b_2*y^5*z*w+132*b_2*y^4*z^2*
w−288*b_2*y^4*w+192*b_2*y^3*z^3*w−288*b_2*y^3*z*w+42*
b_2*y^2*z^4*w−216*b_2*y^2*z^2*w+48*b_2*y*z^5*w−144*b_2*y

*z^3*w+3*b_2*z^6*w−36*b_2*z^4*w
(5) 16*b_3*b_2*y+8*b_3*b_2*z+24*b_2^2*y^2*w+12*b_2^2*z^2*w

−12*y^4*w−12*y^2*z^2*w+16*y^2*w+16*y*z*w−3*z^4*w+4*z
^2*w

(6) 2*b_3*b_2^2*z^2−48*b_3*y^4−48*b_3*y^2*z^2+64*b_3*y^2+64*
b_3*y*z−12*b_3*z^4+16*b_3*z^2−144*b_2^3*y^3*w+72*b_2^3*y
^2*z*w−72*b_2^3*y*z^2*w+36*b_2^3*z^3*w−120*b_2*y^5*w
−132*b_2*y^4*z*w−120*b_2*y^3*z^2*w+288*b_2*y^3*w−132*b_2

*y^2*z^3*w+144*b_2*y^2*z*w−30*b_2*y*z^4*w+216*b_2*y*z^2*
w−33*b_2*z^5*w+108*b_2*z^3*w

(7) 4*b_3^2+4*y^4+4*y^2*z^2−8*y^2+z^4−4*z^2
(8) 576*b_4*y*z^2−576*b_4*z^3+2880*b_3*b_2^3*z*w−1080*b_3*b_2

*z^3*w−1152*b_3*b_2*z*w+576*b_2^4*y^2+288*b_2^4*z^2+192*
b_2^2*y^4−432*b_2^2*y^3*z−1320*b_2^2*y^2*z^2−768*b_2^2*
y^2−216*b_2^2*y*z^3+1536*b_2^2*y*z−708*b_2^2*z^4+672*
b_2^2*z^2+144*y^6−360*y^5*z+396*y^4*z^2−384*y^4−360*y
^3*z^3+864*y^3*z+288*y^2*z^4−96*y^2*z^2+256*y^2−90*y*z
^5−504*y*z^3−512*y*z+63*z^6+444*z^4−320*z^2

225

226 A. GRÖBNER BASIS FOR THE ROBOTIC MOTION PROBLEM

(9) 64*b_4*y^2+64*b_4*y*z−128*b_4*z^2+576*b_3*b_2^3*w−216*b_3
*b_2*z^2*w−192*b_3*b_2*w−240*b_2^2*y^3−264*b_2^2*y^2*z
−120*b_2^2*y*z^2+384*b_2^2*y−132*b_2^2*z^3+192*b_2^2*z
−72*y^5+36*y^4*z−72*y^3*z^2+224*y^3+36*y^2*z^3−48*y^2*z
−18*y*z^4−24*y*z^2−128*y+9*z^5+100*z^3−64*z

(10) 2592*b_4*b_2^2*z^3+1944*b_4*z^5−2592*b_4*z^3−6912*b_3*b_2
^5*z*w+12096*b_3*b_2^3*z*w+972*b_3*b_2*z^5*w−648*b_3*
b_2*z^3*w−3456*b_3*b_2*z*w+1728*b_2^6*y^2+864*b_2^6*
z^2+3456*b_2^4*y^3*z+4752*b_2^4*y^2*z^2−2304*b_2^4*y
^2+1728*b_2^4*y*z^3−5760*b_2^4*y*z+2376*b_2^4*z^4−3168*
b_2^4*z^2+240*b_2^2*y^6−480*b_2^2*y^5*z−1464*b_2^2*y^4*z
^2−384*b_2^2*y^4+4056*b_2^2*y^3*z^3−4272*b_2^2*y^3*z−24*
b_2^2*y^2*z^4−2664*b_2^2*y^2*z^2+768*b_2^2*y^2+2148*
b_2^2*y*z^5−4728*b_2^2*y*z^3+8832*b_2^2*y*z+384*b_2^2*z
^6−4476*b_2^2*z^4+4224*b_2^2*z^2−144*y^8−432*y^7*z+252*y
^6*z^2+384*y^6−324*y^5*z^3+888*y^5*z+432*y^4*z^4+1164*y
^4*z^2−256*y^4−1704*y^3*z^3+1312*y^3*z+171*y^2*z^6+1200*
y^2*z^4−2256*y^2*z^2+27*y*z^7−750*y*z^5+1384*y*z^3−2304*
y*z+18*z^8−1425*z^6+2732*z^4−1152*z^2

(11) 4608*b_4*b_2^2*y*z−11520*b_4*b_2^2*z^2−5184*b_4*z^4+6912*
b_4*z^2+41472*b_3*b_2^5*w−41472*b_3*b_2^3*w−5832*b_3*
b_2*z^4*w+1728*b_3*b_2*z^2*w+9216*b_3*b_2*w−18432*b_2
^4*y^3−21888*b_2^4*y^2*z−9216*b_2^4*y*z^2+27648*b_2^4*y
−10944*b_2^4*z^3+13824*b_2^4*z−5568*b_2^2*y^5+96*b_2^2*y
^4*z−15504*b_2^2*y^3*z^2+28032*b_2^2*y^3−5304*b_2^2*y^2*
z^3+11712*b_2^2*y^2*z−6360*b_2^2*y*z^4+16320*b_2^2*y*z
^2−27648*b_2^2*y−2676*b_2^2*z^5+19104*b_2^2*z^3−13824*
b_2^2*z−288*y^7−720*y^6*z−2376*y^5*z^2+2496*y^5−108*y^4*
z^3+96*y^4*z−2160*y^3*z^4+9408*y^3*z^2−7424*y^3+432*y^2*
z^5−768*y^2*z^3+1152*y^2*z−522*y*z^6+2136*y*z^4−5952*y*z
^2+6144*y+153*z^7+3804*z^5−7648*z^3+3072*z

(12) 144*b_4*b_3*z^2+432*b_4*b_2*z^3*w−384*b_3*b_2^4*z+192*b_3
*b_2^2*z+96*b_3*y^4*z−96*b_3*y^3+96*b_3*y^2*z^3−80*b_3*y
^2*z−176*b_3*y*z^2+128*b_3*y+24*b_3*z^5−152*b_3*z^3+64*
b_3*z+288*b_2^5*y^2*w+144*b_2^5*z^2*w+96*b_2^3*y^4*w
+1152*b_2^3*y^3*z*w+384*b_2^3*y^2*z^2*w−672*b_2^3*y^2*w
+576*b_2^3*y*z^3*w−960*b_2^3*y*z*w+168*b_2^3*z^4*w−672*
b_2^3*z^2*w+72*b_2*y^6*w+384*b_2*y^5*z*w+300*b_2*y^4*z
^2*w−432*b_2*y^4*w+384*b_2*y^3*z^3*w−1440*b_2*y^3*z*w
+246*b_2*y^2*z^4*w−504*b_2*y^2*z^2*w+704*b_2*y^2*w+96*
b_2*y*z^5*w−720*b_2*y*z^3*w+704*b_2*y*z*w+57*b_2*z^6*w
−576*b_2*z^4*w+464*b_2*z^2*w

A. GRÖBNER BASIS FOR THE ROBOTIC MOTION PROBLEM 227

(13) 16*b_4*b_3*y+8*b_4*b_3*z−48*b_4*b_2*y*z*w+120*b_4*b_2*z^2*
w−144*b_3*b_2^4+48*b_3*b_2^2+36*b_3*y^4+36*b_3*y^2*z
^2−40*b_3*y^2−64*b_3*y*z+9*b_3*z^4−16*b_3*z^2+288*b_2^3*y
^3*w+144*b_2^3*y^2*z*w+144*b_2^3*y*z^2*w−288*b_2^3*y*
w+72*b_2^3*z^3*w−144*b_2^3*z*w+144*b_2*y^5*w+72*b_2*y
^4*z*w+144*b_2*y^3*z^2*w−384*b_2*y^3*w+72*b_2*y^2*z^3*w
−96*b_2*y^2*z*w+36*b_2*y*z^4*w−144*b_2*y*z^2*w+96*b_2*y*
w+18*b_2*z^5*w−168*b_2*z^3*w+48*b_2*z*w

(14) 192*b_4*b_3*b_2+384*b_4*y*w−432*b_4*z^3*w+192*b_4*z*w
+384*b_3*b_2^3*z−144*b_3*b_2*z^3−288*b_3*b_2*z−288*b_2^4*
y^2*w−144*b_2^4*z^2*w−96*b_2^2*y^4*w−864*b_2^2*y^3*z*w
−528*b_2^2*y^2*z^2*w+96*b_2^2*y^2*w−432*b_2^2*y*z^3*w
+960*b_2^2*y*z*w−240*b_2^2*z^4*w+384*b_2^2*z^2*w−72*y
^6*w−144*y^5*z*w−36*y^4*z^2*w+48*y^4*w−144*y^3*z^3*w
+576*y^3*z*w+18*y^2*z^4*w−24*y^2*z^2*w+256*y^2*w−36*y*z
^5*w+144*y*z^3*w−704*y*z*w+9*z^6*w+336*z^4*w−272*z^2*w

(15) 288*b_4^2*z−192*b_4*y*z−96*b_4*z^2−1728*b_3*b_2^3*w+648*
b_3*b_2*z^2*w+384*b_3*b_2*w+720*b_2^2*y^3+792*b_2^2*y^2*
z+360*b_2^2*y*z^2−1536*b_2^2*y+396*b_2^2*z^3−672*b_2^2*z
+216*y^5−108*y^4*z+216*y^3*z^2−672*y^3−108*y^2*z^3−48*y
^2*z+54*y*z^4+72*y*z^2+512*y−27*z^5−108*z^3+160*z

(16) 288*b_4^2*y−768*b_4*y*z+480*b_4*z^2−1728*b_3*b_2^3*w+648*
b_3*b_2*z^2*w+960*b_3*b_2*w+720*b_2^2*y^3+792*b_2^2*y^2*
z+360*b_2^2*y*z^2−1248*b_2^2*y+396*b_2^2*z^3−384*b_2^2*z
+216*y^5−108*y^4*z+216*y^3*z^2−672*y^3−108*y^2*z^3−48*y
^2*z+54*y*z^4+360*y*z^2+416*y−27*z^5−396*z^3+256*z

(17) 24*b_4^2*b_3−48*b_4*b_3*z+48*b_4*b_2*y*z*w−120*b_4*b_2*z
^2*w+144*b_3*b_2^4−72*b_3*b_2^2−36*b_3*y^4−36*b_3*y^2*z
^2+48*b_3*y^2+48*b_3*y*z−9*b_3*z^4+36*b_3*z^2−8*b_3−288*
b_2^3*y^3*w−144*b_2^3*y^2*z*w−144*b_2^3*y*z^2*w+288*b_2
^3*y*w−72*b_2^3*z^3*w+144*b_2^3*z*w−144*b_2*y^5*w−72*
b_2*y^4*z*w−144*b_2*y^3*z^2*w+384*b_2*y^3*w−72*b_2*y^2*z
^3*w+120*b_2*y^2*z*w−36*b_2*y*z^4*w+144*b_2*y*z^2*w−96*
b_2*y*w−18*b_2*z^5*w+180*b_2*z^3*w−96*b_2*z*w

(18) 18*b_4^4−12*b_4^2*b_2^2−12*b_4^2−96*b_4*b_2^2*y+64*b_4*y
−72*b_4*z^3+32*b_4*z−72*b_3*b_2*z*w+18*b_2^4−24*b_2^2*
y^2−48*b_2^2*y*z−36*b_2^2*z^2−12*b_2^2−36*y^4−36*y^2*z
^2+80*y^2−16*y*z+45*z^4−28*z^2+2

228 A. GRÖBNER BASIS FOR THE ROBOTIC MOTION PROBLEM

(19) 108*b_5*z^4−144*b_5*z^2+144*b_4*b_3*z−432*b_4*b_2*y*z*w
+1080*b_4*b_2*z^2*w−1296*b_3*b_2^4+864*b_3*b_2^2+204*b_3*
y^4−36*b_3*y^3*z+276*b_3*y^2*z^2−272*b_3*y^2−18*b_3*y*z
^3−152*b_3*y*z+87*b_3*z^4−188*b_3*z^2+2232*b_2^3*y^3*w
+1368*b_2^3*y^2*z*w+1116*b_2^3*y*z^2*w−2592*b_2^3*y*w
+684*b_2^3*z^3*w−1296*b_2^3*z*w+996*b_2*y^5*w+228*b_2*y
^4*z*w+1212*b_2*y^3*z^2*w−3168*b_2*y^3*w+444*b_2*y^2*z
^3*w−504*b_2*y^2*z*w+357*b_2*y*z^4*w−1260*b_2*y*z^2*w
+1728*b_2*y*w+165*b_2*z^5*w−1440*b_2*z^3*w+864*b_2*z*w

(20) 96*b_5*y−72*b_5*z^3+48*b_4*b_3+120*b_3*b_2^2*z+24*b_3*y
^3−48*b_3*y^2*z+12*b_3*y*z^2−80*b_3*y−24*b_3*z^3−64*b_3*
z+72*b_2^3*y^2*w+36*b_2^3*z^2*w+60*b_2*y^4*w−144*b_2*
y^3*z*w−84*b_2*y^2*z^2*w−288*b_2*y^2*w−72*b_2*y*z^3*w
+192*b_2*y*z*w−57*b_2*z^4*w−12*b_2*z^2*w

(21) 64*b_5*b_2*z^2+128*b_4*y*z*w−224*b_4*z^2*w+192*b_3*b_2
^3−72*b_3*b_2*z^2−128*b_3*b_2−240*b_2^2*y^3*w−264*b_2^2*
y^2*z*w−120*b_2^2*y*z^2*w+384*b_2^2*y*w−132*b_2^2*z^3*w
+192*b_2^2*z*w−72*y^5*w+36*y^4*z*w−72*y^3*z^2*w+288*y
^3*w+36*y^2*z^3*w+16*y^2*z*w−18*y*z^4*w−56*y*z^2*w
−256*y*w+9*z^5*w+196*z^3*w−128*z*w

(22) 288*b_5*b_2^2*z+72*b_5*z^3−96*b_5*z+96*b_4*b_3+288*b_4*b_2
*y*w−288*b_4*b_2*z*w−120*b_3*b_2^2*z−24*b_3*y^3+48*b_3*y
^2*z−12*b_3*y*z^2+80*b_3*y+24*b_3*z^3−80*b_3*z−72*b_2^3*y
^2*w−36*b_2^3*z^2*w−60*b_2*y^4*w+144*b_2*y^3*z*w+84*b_2

*y^2*z^2*w+144*b_2*y^2*w+72*b_2*y*z^3*w−480*b_2*y*z*w
+57*b_2*z^4*w+228*b_2*z^2*w

(23) 384*b_5*b_2^3−128*b_5*b_2+288*b_4^3*w−480*b_4*b_2^2*
w−576*b_4*y*z*w+576*b_4*z^2*w−96*b_4*w−1728*b_3*b_2
^3+648*b_3*b_2*z^2+384*b_3*b_2+2160*b_2^2*y^3*w+2376*b_2
^2*y^2*z*w+1080*b_2^2*y*z^2*w−4608*b_2^2*y*w+1188*b_2
^2*z^3*w−1536*b_2^2*z*w+648*y^5*w−324*y^4*z*w+648*y^3*z
^2*w−2016*y^3*w−324*y^2*z^3*w−144*y^2*z*w+162*y*z^4*w
+216*y*z^2*w+1536*y*w−81*z^5*w−612*z^3*w+576*z*w

(24) b_5*b_3+3*b_5*b_2*z*w+b_4*y−b_4*z−y*z+z^2
(25) 96*b_5*b_4*z−48*b_5*z^2−24*b_4*b_3*z+48*b_4*b_2*y*z*w−120*

b_4*b_2*z^2*w+144*b_3*b_2^4−144*b_3*b_2^2−36*b_3*y^4−36*
b_3*y^2*z^2+72*b_3*y^2+48*b_3*y*z−9*b_3*z^4+48*b_3*z
^2−32*b_3−288*b_2^3*y^3*w−144*b_2^3*y^2*z*w−144*b_2^3*y*
z^2*w+288*b_2^3*y*w−72*b_2^3*z^3*w+144*b_2^3*z*w−144*
b_2*y^5*w−72*b_2*y^4*z*w−144*b_2*y^3*z^2*w+528*b_2*y^3*
w−72*b_2*y^2*z^3*w+192*b_2*y^2*z*w−36*b_2*y*z^4*w+216*
b_2*y*z^2*w−384*b_2*y*w−18*b_2*z^5*w+216*b_2*z^3*w−240*
b_2*z*w

(26) 4*b_5*b_4*b_2−4*b_5*b_2*z−3*b_4^2*w+6*b_4*z*w−3*b_2^2*w
−3*z^2*w+w

A. GRÖBNER BASIS FOR THE ROBOTIC MOTION PROBLEM 229

(27) 48*b_5*b_4^2+48*b_5*b_2^2−16*b_5−24*b_4*b_3*z+48*b_4*b_2*
y*z*w−120*b_4*b_2*z^2*w−96*b_4*b_2*w+144*b_3*b_2^4−144*
b_3*b_2^2−36*b_3*y^4−36*b_3*y^2*z^2+72*b_3*y^2+48*b_3*y*z
−9*b_3*z^4+48*b_3*z^2−32*b_3−288*b_2^3*y^3*w−144*b_2^3*y
^2*z*w−144*b_2^3*y*z^2*w+288*b_2^3*y*w−72*b_2^3*z^3*w
+144*b_2^3*z*w−144*b_2*y^5*w−72*b_2*y^4*z*w−144*b_2*y
^3*z^2*w+528*b_2*y^3*w−72*b_2*y^2*z^3*w+192*b_2*y^2*z*w
−36*b_2*y*z^4*w+216*b_2*y*z^2*w−384*b_2*y*w−18*b_2*z^5*w
+216*b_2*z^3*w−144*b_2*z*w

(28) 2*b_5^2−1
(29) a_2−2*b_5*b_2+3*b_4*w−3*z*w
(30) 2*a_3−2*y^2−z^2+2
(31) 48*a_4−96*b_5*b_4−72*b_5*z^3+96*b_5*z+48*b_4*b_3+120*b_3*

b_2^2*z+24*b_3*y^3−48*b_3*y^2*z+12*b_3*y*z^2−80*b_3*y−24*
b_3*z^3−64*b_3*z+72*b_2^3*y^2*w+36*b_2^3*z^2*w+60*b_2*y
^4*w−144*b_2*y^3*z*w−84*b_2*y^2*z^2*w−288*b_2*y^2*w−72*
b_2*y*z^3*w+192*b_2*y*z*w−57*b_2*z^4*w−12*b_2*z^2*w+144*
b_2*w

(32) a_5−b_5

APPENDIX B

Predefined values.

Constant Maxima name Approximate value
Last result %

π %pi 3.14159265358979
e %e 2.71828182845905
γ %gamma 0.577215664901533
φ %phi 1.61803398874989√
−1 %i

+∞ inf
−∞ minf

F false
T true

0+ zeroa
0− zerob

__ (two underscores) Last expressions being evaluated

231

APPENDIX C

Functional equation

C.1. Poisson summation

In this section, we will prove the functional equation of the ψ-function
used in section 13 on page 211.

Baron Siméon Denis Poisson FRS FRSE (1781 – 1840) was a French mathe-
matician and physicist who worked on statistics, complex analysis, partial
differential equations, the calculus of variations, analytical mechanics, elec-
tricity and magnetism, thermodynamics, elasticity, and fluid mechanics.

THEOREM C.1.1 (Poisson Summation formula). If f (x) is a smooth func-
tion such that ∫ ∞

−∞
| f (x)|dx

is well-defined and finite and

f̂ (u) =
∫ ∞

−∞
f (x)e−2πixudx

is its Fourier transform, then

(C.1.1)
∞

∑
n>−∞

f (n) =
∞

∑
k>−∞

f̂ (k)

PROOF. Create a periodic function with period 1:

F(x) =
∞

∑
n>−∞

f (x + n)

and expand it into a Fourier series

(C.1.2) F(x) =
∞

∑
n>−∞

ane2πinx

233

234 C. FUNCTIONAL EQUATION

where the Fourier coefficients are given by

an =
∫ ∞

−∞
F(x)e−2πinxdx

=
∞

∑
m>−∞

∫ 1

0
f (x + m)e−2πinxdx

=
∞

∑
m>−∞

∫ m+1

m
f (y)e−2πin(y−m)dy

∞

∑
m>−∞

e2πinm
∫ m+1

m
f (y)e−2πinydy

=
∫ ∞

−∞
f (x)e−2πinydy = f̂ (−n)

since e2πinm = 1.
If we set x = 0 in equation C.1.2 on the preceding page, we get equa-

tion C.1.1 on the previous page. □

C.2. The main result

Suppose

G(x) =
∞

∑
n>−∞

e−πn2x = 1 + 2ψ(x)

We can regard this as the sum of values of a function

f (u) = e−πu2x

and take its Fourier transform. Here, u is the independent variable, x is a
parameter, and y is the new variable (introduced by the Fourier transform).
Typing

i n t e g r a t e (%e^(−%pi *u^2*x)*%e^(2*% pi*% i *u* y) , u , minf , inf)

gives

e−
π·y2

x
√

x
so

∞

∑
n>−∞

e−πn2x =
1√
x

∞

∑
n>−∞

e−πn2/x

and

(C.2.1) G(x) =
1√
x

G
(

1
x

)

APPENDIX D

Fermat factorization

D.1. The algorithm

Suppose N is an odd integer greater than 1 and N = u · v where u and
v are (odd) integers. Fermat factorization is based on the equation

N =

(
u + v

2

)2
−
(

u − v
2

)2

or (
u + v

2

)2
− N =

(
u − v

2

)2

Since u and v are both odd, their sum and differences are even, so dividing
by 2 gives us integers.

Oddly enough, this gives us a way to find u or v if the difference be-
tween them isn’t too great.

We compute
k2 − N

for k =
⌈√

N
⌉

,
⌈√

N
⌉
+ 1,

⌈√
N
⌉
+ 2, . . . and test whether the difference is

a perfect square. If it is, say m2, then u = k ± m and we have found a factor
of N.

Here ⌈x⌉ is the ceiling function, the least integer that is ≥ x. In Max-
ima, it is coded via

ceiling(x)

It is a complement to the floor-command

floor(x)

which returns the greatest integer ≤ x.
In this example, we will use the isqrt-command which computes inte-

ger square roots of very large numbers — i.e., isqrt(n) computes the largest
integer, k, such that k2 ≤ n.

EXAMPLE D.1.1. Let u = 1000003 and v be the next prime, which is
1000033. We compute

u · v = 1000008000015
and

c e i l i n g (f l o a t (sqr t (1 0 0 0 0 0 8 0 0 0 0 1 5)))

is

235

236 D. FERMAT FACTORIZATION

1000018

and

1000018^2 −n ;

gives
225 = 152

so we immediately get both factors of n: 1000018 − 15 = 1000003 and
1000018 + 15 = 1000033.

The “lucky accident” in this example (where the answer occurs on the

first iteration) turns out to always occur if 1
2q

(
p−q

2

)2
< 1, where p is the

larger of the two primes — see section D.2 on the facing page below.
We can write a Maxima program implementing this algorithm. First,

we need a function to determine whether a number is a perfect square:

square_p (n) : = block (
[sqval : i s q r t (n)] ,

/ * t e s t whe the r t h e s q u a r e r o o t
i s an i n t e g e r * /

i s (n=sqval ^2)
) ;

Now for the main function:

one_fac tor (n) : = block (
[s t a r t : i s q r t (n) , t e s t , val] ,

for x : 0 step 1 thru 100 do
(

/ * Note : f o r − l o o p s canno t h a n d l e ve ry l a r g e numbers
so we on ly i t e r a t e th rough t h e i n c r e m e n t s t o
c e i l i n g (s q r t (n)) * /

val : x+ s t a r t ,
t e s t : val ^2−n ,
i f (square_p (t e s t)) then

return (val − i s q r t (t e s t))
/ * I f t e s t i s a p e r f e c t square , t h en

i s q r t i s e q u a l t o i t s s q u a r e r o o t * /
)

) ;

For instance

one_fac tor (2251644881930449333) ;

returns
1500450271

after 3 iterations of the loop.
If

D.2. DERIVATION OF THE UPPER BOUND FOR THE NUMBER OF ITERATIONS 237

n = 8956494142912946049415883818712449246261041215620
42227318384494381723497514540860474803494041479529

p:one_factor(n) instantly comes back with

29927402397991286489627837734179186385188296382227

a prime factor of n, and n/p produces

29927402397991286489627904551843385490310576382227

the other prime factor.

D.2. Derivation of the upper bound for the number of iterations

Suppose 0 < q < p and N = pq. We have

N =

(
p + q

2

)2
−
(

p − q
2

)2

or (
p + q

2

)2
− N =

(
p − q

2

)2

(
p + q

2
−
√

N
)(

p + q
2

+
√

N
)
=

(
p − q

2

)2

Note that (
p + q

2
+
√

N
)
> 2q

so dividing by 2q will give a larger result than dividing by
(

p+q
2 +

√
N
)

(to

get
(

p−q
2

)2
). We get

0 <
p + q

2
−
√

N <
1
2q

(
p − q

2

)2

and the quantity on the right is an approximate upper bound to the number
of iterations required.

EXERCISES.

1. Factor 15241580725499173.

APPENDIX E

The Maxima Programming language

E.1. Introduction

Maxima implements a powerful programming language that is used
for the functions in its libraries. We have already seen how to program a
function and the block-construct. This is not an exhaustive treatment of the
language by any means; it should be enough to understand the programs
in the book.

E.2. Commands for functions and equations

Recall that we code functions via

f(args):=code;

and a memoized function (usually, of a single argument although multiple
integer arguments are possible) via

f[arg]:=code;

We can access the arguments of a function-call via the args command:

args(f(a,b,c))
[a,b,c]

and the function-name via the op-command:

op(f(a,b,c))
f

Given an equation, a = b, we can isolate the sides of the equation via the
rhs and lhs commands:

rhs(a=b)
b
lhs(a=b)
a

We have the subst-command or. The command’s format is

subst (new_value , o ld_var iab le , express ion)

or

subst (o l d _ v a r i a b l e =new_value , express ion)

This command can also take a list of expressions and it performs the sub-
stitution in each of them.

239

240 E. THE MAXIMA PROGRAMMING LANGUAGE

E.3. Trigonometric functions

Maxima implements all of the common trig functions and their in-
verses:

(1) sin(x), asin(x) — the sine and its inverse.
(2) cos(x), acos(x) — the cosine and its inverse.
(3) tan(x), atan(x) — the tangent and its inverse. We also have the

atan2(y,x) function, which computes the angle between the posi-
tive x-axis and a line from the origin and the point (x, y). Note
that atan2(0,x) is 0 if x > 0 and π is x < 0. atan2(0,0) is undefined.

E.4. Logical Operations

We have already seen the if (something) then do_something construct.
Variables can take on logical values: true, false. We also operations

� and
� or
� not
� is (expression) — determines whether expression is true. Returns

true or false.

EXAMPLE. if((a<3) and (b>4)) then do_something

E.5. Looping constructs

Many programs have loops that perform sequences of computations
over and over again. Maxima has several of these:

� for variable: initial_value step increment thru limit do (body)
Example: for t:0 step .01 thru 10 do (stuff)

� for variable: initial_value step increment while logical_condition do
(body)
for x:1 step 10 while keep_going do
(stuff,more_stuff,etc.,keep_going:(a>5))

� for variable: initial_value step increment unless logical_condition do
(body)
for x:1 step -1 unless time_to_stop do
(stuff,more_stuff,etc.,time_to_stop:true)

� while logical_condition do (stuff)

Predicate functions. These all end with the letter ‘p’ and test properties of
objects:

evenp — tests whether a literal integer is even. So evenp(2) is true, but
if x:2; evenp(x) is false.

integerp — tests whether a literal integer is present. So integerp(3) is
true, but x:7; integerp(x) is false.

oddp — tests whether a literal integer is odd. So oddp(3) is true, but if
x:3; oddp(x) is false.

listp — tests whether an object is a list.

E.6. LISTS 241

orderlessp — a predicate that takes two arguments and tests whether
the first is less than the second. This uses an ordering that Maxima estab-
lishes for all identifiers and expressions (so all pairs of objects are compara-
ble). This is not necessarily the same as numeric comparison (even between
numbers).

ordergreatp — reverses orderlessp.
ordermagnitudep — compares numbers numerically (as <) and every-

thing else like orderlessp.

EXERCISES.

1. Since integerp only works for literal integers, how do you determine
whether a variable like x is an integer?

E.6. Lists

Since Maxima is written in Lisp, it has all of the powerful list-handling
features of Lisp. A Maxima list is a comma-separated list1 of data-items
enclosed in square brackets. Examples:

� L1:[1,2,3]
� L2:[[1],[[2]],x^2-1]
� E:[]

Elements are accessed by indices that start with 1, in square brackets.

� L1[2]=2
� L2[3]=x^2-1
� L2[2][1]=[2]

We have many other list-operations:

� append returns the concatenation of all of the lists
that occurs as its arguments. if list_1=[x_1,. . . x_n],
list2=[y_1,. . . ,y_m],. . . ,list_t=[w_1,. . . ,w_k] then
append(list_1,. . . ,list_t)=[x_1,. . . x_n,y_1,. . . ,y_m,. . . ,w_1,. . . ,w_k]

� assoc (key, e, default) or assoc (key, e) — assoc searches for key as
the first part of an argument of e and returns the second part of
the first match, if any.
• key may be any expression. e must be a nonatomic expres-

sion, and every argument of e must have exactly two parts.
assoc returns the second part of the first matching argument
of e. Matches are determined by is(key = first(a)) where a is an
argument of e.

1Recursive definition!

242 E. THE MAXIMA PROGRAMMING LANGUAGE

• If there are two or more matches, only the first is returned. If
there are no matches, default is returned, if specified. Other-
wise, false is returned.

Examples:
• assoc (f(x), foo(g(x) = y, f(x) = z + 1, h(x) = 2*u));

z + 1
• assoc (yy, [xx = 111, yy = 222, yy = 333, yy = 444]);

222
• If there are no matches, default is returned, if specified. Oth-

erwise, false is returned.
assoc (abc, [[x, 111], [y, 222], [z, 333]], none);
none

• assoc (abc, [[x, 111], [y, 222], [z, 333]]);
false

� cons(e,L) returns a new list with e as the first element followed
by the elements of L. Since it doesn’t modify the list, L, one must
write L:cons(e, L) to put a new element onto the list. This function
can also be used where the second argument is other than a list,
which might be useful. In this case, cons (expr_1, expr_2) returns
an expression with same operator as expr_2 but with argument
cons(expr_1, args(expr_2)).
Examples:
• cons(a,[b,c,d]);

[a, b, c, d]
• cons(a,f(b,c,d));

f(a, b, c, d)
� create_list — create_list (form, x_1, list_1, . . . , x_n, list_n) Create a

list by evaluating form with x_1 bound to each element of list_1,
and for each such binding bind x_2 to each element of list_2, . . .
The number of elements in the result will be the product of the
number of elements in each list. Each variable x_i must actually
be a symbol — it will not be evaluated. The list arguments will be
evaluated once at the beginning of the iteration.
• create_list (x^i, i, [1, 3, 7]);

[x,x,^3 , x^7]
• create_list ([i, j], i, [a, b], j, [e, f, h]);

[[a, e], [a, f], [a, h], [b, e], [b, f], [b, h]]
� copylist(list) Does what the name implies.
� delete(expr_1, expr_2) removes from expr_2 any arguments of its

top-level operator which are the same (as determined by “=”) as
expr_1. Note that “=” tests for formal equality, not equivalence.
Note also that arguments of subexpressions are not affected. Ex-
amples:
• Removing elements from a list.

(%i1) delete (y, [w, x, y, z, z, y, x, w]);
(%o1) [w, x, z, z, x, w]

E.6. LISTS 243

• Removing terms from a sum.
(%i1) delete (sin(x), x + sin(x) + y);
(%o1) y + x

• Removing factors from a product.
(%i1) delete (u - x, (u - w)*(u - x)*(u - y)*(u - z));
(%o1) (u - w) (u - y) (u - z)

• Removing arguments from an arbitrary expression.
(%i1) delete (a, foo (a, b, c, d, a));
(%o1) foo(b, c, d)

• Limiting the number of removed arguments.
(%i1) delete (a, foo (a, b, a, c, d, a), 2);
(%o1) foo(b, c, d, a)

� endcons(e,L) returns a new list with all of the elements of L fol-
lowed by e. The second argument (L) can also be an expression.
Since it doesn’t modify the list, L, one must write L:endcons(e, L)
to put a new element onto the front of the list. Examples:
• (%i1) endcons(a,[b,c,d]);

(%o1) [b, c, d, a]
• (%i2) endcons(a,f(b,c,d));

(%o2) f(b, c, d, a)
� first(expr) — Returns the first part of expr which may result in the

first element of a list, the first row of a matrix, the first term of a
sum, etc.

� firstn (expr, count) — Returns the first count arguments of expr, if
expr has at least count arguments. Returns expr if expr has less than
count arguments.

� join (L, m) — Creates a new list containing the elements of lists
L and m, interspersed. The result has elements [L[1], m[1], L[2],
m[2], . . .]. The lists L and m may contain any type of elements.

� last (expr) — Returns the last part (term, row, element, etc.) of the
expr.

� lastn (expr, count) — — Returns the last count arguments of expr,
if expr has at least count arguments. Returns expr if expr has less
than count arguments.

� length (expr) — Returns (by default) the number of parts in the
external (displayed) form of expr. For lists this is the number of
elements, for matrices it is the number of rows, and for sums it is
the number of terms.

� map(f,list) — returns a list with the function f applied to the mem-
bers of list.

� listp (expr) — Returns true if expr is a list else false.
� lreduce(F,s) — extends the binary function, F, to all of the list, s,

by composition from the left. Example
lreduce(F,s)=F(. . . F(s_1 ,s_2),s_3),s_4,. . . ,s_n).

� makelist — makelist (), creates the empty list, [].
• makelist (expr, n), makelist (expr), creates a list with expr as

its single element. makelist (expr, n) creates a list of n copies
of expr.

244 E. THE MAXIMA PROGRAMMING LANGUAGE

• makelist (expr(i), i, i_max) creates a list with expr evaluated at
i=1 to i=imax, stepped by 1 each time.

• makelist (expr(i), i, i_0, i_max) creates a list with expr evalu-
ated at i=i0 to i=imax, stepped by 1 each time.

• makelist (expr(i), i, i_0, i_max, step) creates a list with expr
evaluated at i=i0 to i=imax, stepped by step each time.

• makelist (expr(x), x, list) creates a list with expr(x) evaluated x
equal to successive elements of list.

� member (expr_1, expr_2) Tests whether expr_1 is a member of
expr_2, which may be a list or expression.

� pop (list) — removes and returns the first element of list. Note: it
modifies list in the process.

� push (item, list) — puts item as the first member of list and returns
a copy of the new list.

� rest — rest (expr, n) rest (expr) Returns expr with its first n elements
removed if n is positive and its last - n elements removed if n is
negative. If n is 1 it may be omitted. The first argument expr may
be a list, matrix, or other expression. Applying rest to expression
such as f(a,b,c) returns f(b,c). In general, applying rest to a non-
list doesn’t make sense. For example, because ’^’ requires two
arguments, rest(a^b) results in an error message. The functions
args and op may be useful as well, since args(a^b) returns [a,b]
and op(a^b) returns ^.

� reverse (list) — Reverses the order of the members of the list (not
the members themselves). reverse also works on general expres-
sions, e.g. reverse(a=b); gives b=a.

� rreduce(F,s) — Like lreduce but it works from the right rather than
the left. Example:
rreduce(F,s)=F(s_1,F(s_2,. . . F(s_(n-2),F(s_(n-1),s_n). . .).

� sort(list,predicate) — returns a list that is the result of sorting list in
ascending order, using the predicate to compare pairs of items. If
predicate is omitted, then orderlessp is used (which can compare
any two Maxima objects or expressions). To sort in descending
order, use ordergreatp as the predicate.
The predicate may be specified as the name of a function or binary
infix operator, or as a lambda expression. If specified as the name
of an operator, the name must be enclosed in double quotes.
• sort ([1, a, b, 2, 3, c], ’orderlessp);

[1, 2, 3, a, b, c]
• sort ([1, a, b, 2, 3, c], ’ordergreatp);

[c, b, a, 3, 2, 1]
• L : [%pi, 3, 4, %e, %gamma];

[%pi, 3, 4, %e, %gamma]
sort (L, ">");
[4, %pi, 3, %e, %gamma]

• ordermagnitudep orders numbers, constants, and constant
expressions the same as <, and all other elements the same as
orderlessp.

E.7. MACROS 245

L: [%i, 1+%i, 2*x, minf, inf, %e, sin(1), 0,1,2,3, 1.0, 1.0b0];
[%i, %i + 1, 2 x, minf, inf, %e, sin(1), 0, 1, 2, 3, 1.0, 1.0b0]
sort (L, ordermagnitudep);
[minf, 0, sin(1), 1, 1.0, 1.0b0, 2, %e, 3, inf, %i, %i + 1, 2 x]

� sublist (list, p) — Returns the list of elements of list for which the
predicate p returns true.
L: [1, 2, 3, 4, 5, 6];
[1, 2, 3, 4, 5, 6]
sublist (L, evenp);
[2, 4, 6]

� sublist_indices (L, P) — Returns the indices of the elements x of
the list L for which the predicate maybe(P(x)) returns true; this ex-
cludes unknown as well as false. P may be the name of a function
or a lambda expression. L must be a literal list.
• sublist_indices (’[a, b, b, c, 1, 2, b, 3, b], lambda ([x], x=’b));

[2, 3, 7, 9]
� tree_reduce — tree_reduce (F, s), tree_reduce (F, s, s_0) Extends

the binary function F to an n-ary function by composition, where
s is a set or list.
• tree_reduce is equivalent to the following: Apply F to suc-

cessive pairs of elements to form a new list [F(s_1, s_2), F(s_3,
s_4), . . .], carrying the final element unchanged if there are an
odd number of elements. Then repeat until the list is reduced
to a single element, which is the return value.

• When the optional argument s_0 is present, the result is
equivalent tree_reduce(F, cons(s_0, s)).

� unique (L) — Returns the unique elements of the list L.
• When all the elements of L are unique, unique returns a shal-

low copy of L, not L itself.
• If L is not a list, unique returns L.

E.7. Macros

To describe what a macro does, we must first analyze how a function is
called. When f (x, y, z) is called, Maxima

(1) evaluates x, y, z
(2) jumps to the function-code and plugs those values into the body

of f .
(3) then returns with the computed values

A macro f (x, y, z) superficially resembles a function but it
(1) executes the body of the macro on x, y, z and other expressions (do-

ing something like a text-edit), inserting it into the code where that
called it — i.e., no jumping and returning,

(2) then it executes the revised expression.
A user-defined macro uses the ::= operation:

zz (x) : : = x /10;

The right side of this is edited into the expression where

246 E. THE MAXIMA PROGRAMMING LANGUAGE

zz (x)

appears. In other words

p : a+b+zz (top)+d

is rewritten into

p : a+b+top/10+d

before it is executed. As such, the effect of this macro is very similar to a
function-call.

The main macro built in to Maxima is buildq.
It has the form

buildq ([x1 : vq , x2 : v2 , . . . , xn : vn] ,
s t u f f involving x1 , . . . , xn

) ;

It does a kind of text-edit of stuff replacing xi by vi for i = 1, . . . , n, and
then it executes the edited code. If an xi has no corresponding vi, whatever
value it was assigned in the past is used. So

b : 2 9 ;
buildq ([a : x , b] , a + b + c) ;

results in

x + c + 29

The command

buildq ([e : [a , b , c]] , foo (x , e , y)) ;

results in

foo (x , [a , b , c] , y)

which is then executed.
Note that the substitutions a buildq command are carried out in paral-

lel, so

buildq ([a : x , b : a , c , b] , foo (x , e , y)) ;

produces

foo (x , a , b) ;

If they had been carried out sequentially (from left to right, as subst does),
we would’ve gotten

foo (x , x , x) ;

Within a buildq command, the splice-command (whose argument is a list)
interpolates that list into a larger list. So, whereas,

buildq ([e : [a , b , c]] , foo (x , e , y)) ;

E.8. INPUT AND OUTPUT 247

produces

foo (x , [a , b , c] , y)

the splice command

buildq ([e : [a , b , c]] , foo (x , s p l i c e (e) , y)) ;

produces

foo (x , a , b , c , y)

Outside of a buildq command, the splice-command is merely an error.
Here’s an example that combines several language features:

show_values ([L]) : : = buildq ([L] , map ("=" , ’L , L)) ;

If we have statements

a : 3 ;
b : 2 ;
c : 1 0 0 0 ;
print (show_values (a , b , c)) ;

is interpreted in several steps. First, it rewrites the print statement as

print (buildq ([a , b , c] , map ("=" , ’ [a , b , c] , [a , b , c]))) ;

Next, we get

print (map ("=" , ’ [a , b , c] , [a , b , c]))) ;

Since the print command is a function rather than a macro, it executes the
map-command to get

print ([a =2 ,b=3 , c = 1 0 0 0]) ;

and prints it.
Other macro-related commands, include
macroexpand — this expands a macro but doesn’t execute it. If the

macro calls other macros, they are also expanded.
macroexpand1 — this expands a macro but doesn’t execute it. If the

macro calls other macros, they are not expanded — it only expands the top-
most level of nested macro-calls.

E.8. Input and Output

The most widely-used forms of output involve plotting and drawing pic-
tures. These operations are so important, an entire appendix is devoted to
them — see appendix F on page 251.

Simple (and useful for debugging) output-commands are:
� display (expr_1, expr_2, . . .) — displays equations whose left

side is expr_i unevaluated, and whose right side is the value
of the expression centered on the line. This function is useful
in blocks and for statements in order to have intermediate

248 E. THE MAXIMA PROGRAMMING LANGUAGE

results displayed. The arguments to display are usually atoms,
subscripted variables, or function calls.

� print (expr_1, . . . , expr_n) — Evaluates and displays expr_1, . . . ,
expr_n one after another, from left to right, starting at the left edge
of the console display. The value returned by print is the value of
its last argument. print does not generate intermediate expression
labels.
Note: __ (two underscores) represents the input expression cur-
rently being evaluated. That is, while an input expression expr is
being evaluated, __ is expr. Example:
• print ("My name is ", __);

My name is print(My name is, __)

• zztop (__);
zztop(zztop(__))

� appendfile (filename) — Appends a console transcript to filename.
appendfile is the same as writefile, except that the transcript file,
if it exists, is always appended.

� batchload (filename) — Reads Maxima expressions from filename
and evaluates them, without displaying the input or output
expressions and without assigning labels to output expressions.
Printed output (such as produced by print or describe) is
displayed, however.

� closefile() closes the transcript file opened by appendfile or write-
file.

� file_search (filename) — file_search searches for the file filename
and returns the path to the file (as a string) if it can be found;
otherwise file_search returns false. file_search (filename) searches
in the default search directories, which are specified by the
file_search_maxima, file_search_lisp, and file_search_demo
variables.
file_search first checks if the actual name passed exists, before
attempting to match it to “wildcard” file search patterns.
• file_search_maxima Option variable,
• file_search_lisp Option variable,
• file_search_demo Option variable,
• file_search_usage Option variable,
• file_search_tests.

� load — load (filename) Evaluates expressions in filename, thus
bringing variables, functions, and other objects into Maxima.
The binding of any existing object is clobbered by the binding
recovered from filename. To find the file, load calls file_search
with file_search_maxima and file_search_lisp as the search
directories. If load succeeds, it returns the name of the file.
Otherwise load prints an error message.
• load works equally well for Lisp code and Maxima code.

Files created by save, translate_file, and compile_file, which
create Lisp code, and stringout, which creates Maxima code,

E.8. INPUT AND OUTPUT 249

can all be processed by load. load calls loadfile to load Lisp
files and batchload to load Maxima files.

� directory — directory (path) Returns a list of the files and direc-
tories found in path in the file system. path may contain wild-
card characters (i.e., characters which represent unspecified parts
of the path), which include at least the asterisk on most systems,
and possibly other characters, depending on the system.

� printfile — printfile (path) Prints the file named by path to the
console. path may be a string or a symbol; if it is a symbol, it is
converted to a string. If path names a file which is accessible from
the current working directory, that file is printed to the console.
Otherwise, printfile attempts to locate the file by appending path
to each of the elements of file_search_usage via filename_merge.
printfile returns path if it names an existing file, or otherwise the
result of a successful filename merge.

� save —This takes several forms:
• save (filename, name_1, name_2, name_3, . . .) Stores the current

values of name_1, name_2, name_3, . . . , in filename. The argu-
ments are the names of variables, functions, or other objects.
If a name has no value or function associated with it, it is ig-
nored. save returns filename. save stores data in the form of
Lisp expressions. If filename ends in .lisp the data stored by
save may be recovered by load (filename). See load.

• save (filename, values, functions, labels, . . .) — stores the items
named by values, functions, labels, etc. The names may be any
specified by the variable infolists.values comprises all user-
defined variables.

• save (filename, [m, n]) — stores the values of input and output
labels m through n. Note that m and n must be literal integers.
Input and output labels may also be stored one by one, e.g.,
save ("foo.1", %i42, %o42).

• save (filename, labels) stores all input and output labels.
When the stored labels are recovered, they clobber existing
labels.

• save (filename, all) — stores the current state of Maxima.
• save (filename, name_1=expr_1, name_2=expr_2, . . .) stores the

values of expr_1, expr_2, . . . , with names name_1, name_2, . . .
It is useful to apply this form to input and output labels, e.g.,
save ("foo.1", aa=%o88). The right-hand side of the equality
in this form may be any expression, which is evaluated.

� stringout — Similar to save above but stores information in Max-
ima form rather than Lisp form. This occurs in several forms (see
save, above):
• stringout (filename, expr_1, expr_2, expr_3, . . .)
• stringout (filename, [m, n])
• stringout (filename, input)
• stringout (filename, functions)
• stringout (filename, values)

250 E. THE MAXIMA PROGRAMMING LANGUAGE

� with_stdout — with_stdout (s, expr_1, expr_2, expr_3, . . .) Eval-
uates expr_1, expr_2, expr_3, . . . and writes any output thus gen-
erated to a file f or output stream s. The evaluated expressions
are not written to the console. with_stdout redirects output com-
mands that normally print on the console to the file. Output may
be generated by print and display among other functions.
with_stdout ("tmp.out", for i:5 thru 10 do
print (i, "! yields", i!))$
(%i2) printfile ("tmp.out")$
5 ! yields 120
6 ! yields 720
7 ! yields 5040
8 ! yields 40320
9 ! yields 362880
10 ! yields 3628800

� writefile — writefile(filename) Begins writing a transcript of the
Maxima session to filename. All interaction between the user and
Maxima is then recorded in this file, just as it appears on the con-
sole.

APPENDIX F

Visual outputs

F.1. Plotting

F.1.1. Basic plot-commands. Basic plotting in wxMaxima is done by
external software called ‘gnuPlot’, which provides the commands plot2d
and plot3d as well as several others. The basic command varies depending
on whether you are doing a single plot or multiple superimposed plots.

With a single plot, the format looks like (z=2,3)

plotzd (f u n c t i o n _ s p e c i f i c a t i o n , [x , lower_lim , upper_lim]
{ , [y , lower_lim , upper_lim] }
{ , [s tyle , p lo t_opt ions] } { , terminal_spec } { , f i l e _ s p e c })

(Items in curly brackets are optional).
With multiple superimposed plots (only with plot2d) we have

plot2d ([f1 , . . . , fn] , [x , lower_lim , upper_lim]
{ , [y , lower_lim , upper_lim] } ,
{ [s tyle , p lot_option_1 , . . . , p lot_opt ion_n] }
{ , terminal_spec } { , f i l e _ s p e c })

F.1.2. Function specifications. Descriptions of functions to be plotted
take many forms. The most basic function-specification is simply to name
the function. Examples:

� x^2-3*x
� sin(cos(x))

In many cases, functions are defined by Maxima code that has an
if-statement that tests the independent variable. In these cases, the
function must be quoted with a single quote. Example:

� ’myfunct(x)

With functions like this, the if-statement is evaluated once by Maxima and
the outcome remains fixed throughout the plot. The solution is to quote the
function, so the function itself is sent to GnuPlot.

� With functions only defined at certain points, we can define a
function to be discrete. This consists of the keyword discrete in a
list with a list of points. For example:
f:[discrete,[[1,2],[2,3],[3,5],[4,7],[5,11],[6,13],[7,17],[8,19],[9,23],[10,29]]];
defines a function equal to the first 10 prime numbers. In general,
a discrete function can take two forms:

251

252 F. VISUAL OUTPUTS

[discrete,[[x1,y1],. . . ,[xn,yn]]] or
[discrete,[[x1,. . . ,xn],[y1,. . . ,yn]]]

� An equation defines an implicit function, and these can be plotted.
One must provide ranges of values for all the variables. Example:
plot2d(x^2+y^4=1,[x,-1,1],[y,-1,1]).

F.1.3. High-level plot styles. These are specified with the word ‘style’
followed in a list that indicates the style:

� lines — this is the default. Points are plotted and connected with
lines.

� points — plots isolated points.
� linespoints — plots lines but also highlights the original points.
� dots — plots isolated dots.

Example:
[style,lines,lines,points] if are plotting three functions and want these

three respective styles.
We also specify colors of the various plots via:
[color,name_1,. . . ,name_n]
for n plots. The acceptable colors-names are

� red
� green
� blue
� magenta
� cyan
� yellow
� orange
� violet
� brown
� gray
� black
� white
� # followed by six hexadecimal digits: two for the red component,

two for green component and two for the blue component.
This expression must be quoted with double-quotes. Example:
"#3d01f2". This produces a bluish violet color.

� If the name of a given color is unknown, black is used

If there are more curves or surfaces than colors, the colors are repeated in
sequence. For instance, if you write [color,black] all of the plots will be
black. If no colors are specified, defaults are used (blue, red, green, etc.).

If we have points in the styles, we can specify the point type via the
statement

[point_type,typename_1. . . ,typename_n]
The acceptable point-type-names are:

� bullet
� circle
� plus
� times

F.1. PLOTTING 253

x

x^2

x^3

x^4

discrete4

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

FIGURE F.1.1. High-level plot example

� asterisk
� box
� square
� triangle
� delta
� wedge
� nabla
� diamond
� lozenge

If there are more sets of points than objects in this list, they will be repeated
sequentially.

Here’s an example:

plot2d ([x ^2 , x ^3 , x ^4 , [d i s c r e t e , [[. 1 , . 2] , [. 2 , . 3] , [. 3 , . 5] ,
[. 4 , . 7] , [. 5 , . 1 1] , [. 6 , . 1 3] , [. 7 , . 1 7] , [. 8 , . 1 9] , [. 9 , . 2 3] ,
[1 , . 2 9]]]] , [x , − 1 , 1] , [s t y l e , l i n e s , l i n e s , l i n e s , points] ,
[color , blue , red , green] , [point_type , nabla])

This produces the plot in figure F.1.1.
Another example: Here we plot two implicit functions, one explicit one

(x^2) and a discrete function that is defined at a single point. Note that
discrete functions expect a list of points even if there’s only a single point in
it:

plot2d ([x =1 ,y=3 , x ^2 , [d i s c r e t e , [[1 , 3]]]] , [x , − 1 , 3] ,
[y , − 1 , 1 0] , [s tyle , l ines , l ines , l ines , points] ,
[point_type , a s t e r i s k]) ;

We get the plot in figure F.1.2 on the next page.

254 F. VISUAL OUTPUTS

y

x

x = 1
y = 3

x^2
discrete4

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2 2.5 3

FIGURE F.1.2. Mixed plot-types

F.1.4. Slightly lower-level plot styles. These are slightly harder to use
than the high-level options above. Their main (only?) advantage is that
you can specify the size of each object. In this case, the styles are lists rather
than simple names:

� [lines,line_width{,color}] — this is the default. Points are plotted
and connected with lines.

� [points,radius_of_points{,color,type_of_point}] — plots isolated
points. See table F.1.1 on the facing page.

� [linespoints,line_width{,color}] — plots lines but also highlights
the original points.

� [dots] — plots isolated tiny dots.
For example:

plot2d ([[discre te , [[− 1 , . 3] , [0 , . 1] , [1 , . 5]]] , x ^2] ,
[x , − 1 , 1] , [s tyle , [points , 4 , 7 , 1] , [l ines , 2 , 1]]) ;

produces the plot in figure F.1.3 on the next page.
If we leave out the style command, the style defaults to ‘lines’ and the

plot looks like figure F.1.4 on the facing page.
Colors (X11 term)
1: blue, 2: red, 3: magenta, 4: orange, 5: brown, 6: lime and 7: aqua

F.1.5. Other options. There are several other options that affect how
the plot looks. These are all optional.

� [nticks,nn] — the number of initial points used to calculate the
curve (the default is 10). GnuPlot starts evaluating the function to
be plotted with this number of points and subdivides its intervals

F.1. PLOTTING 255

x

discrete1

x^2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

FIGURE F.1.3. Plot example 1

Code Description Code Description Code Description
−1 None 4 Square 9 Filled up-triangle
0 Dot 5 Filled square 10 Down-triangle
1 Plus 6 Circle 11 Filled down-triangle
2 Multiply 7 Filled circle 12 Diamond
3 Asterisk 8 Up-triangle 13 Filled diamond

TABLE F.1.1. type_of_point codes

x

discrete1

x^2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

FIGURE F.1.4. Plot example 2

where the function changes rapidly, the goal being to produce a
smooth plot.

� [xlabel,"text"] — label for the x-axis.

256 F. VISUAL OUTPUTS

s
in

(t
)

cos(t)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

FIGURE F.1.5. Parametric plot 1

� [ylabel,"text"] — label for the y-axis.
� [legend,"text1",. . . ,"textn"] — labels for n plots (must be in the

same order as the plotted functions!).
� [grid,nx,ny] — number of grid-lines.
� [yxratio, nn] — defines the shape of the rectangle in which the plot

is drawn.
� [title,"string"] — the title of the plot.
� logx,logy — not enclosed in square brackets. Causes logarithmic

scales to be used.
� same_xy — causes the aspect ratio of the plot to be 1.

NOTE. Some editors uses “styled” curly brackets for the quote char-
acter. These are not recognized as quotes by wxMaxima (although they
display as straight quotes in wxMaxima!) and can lead to mysterious er-
rors. Of course, using wxMaxima as your text-editor produces the right
kinds of quotes!

F.1.6. Parametric plots. Many geometric objects are defined paramet-
rically. These can be plotted with plot2d and a list headed with the key-
word parametric. The general form is

plot2d ([parametric , two−funct ions_of_parameter ,
range_of_parameter]) ;

For instance, the command

plot2d ([parametric , cos (t) , s in (t) , [t ,−%pi ,% pi]] ,
[x , −4/3 , 4 / 3]) ;

produces the plot in figure F.1.5.
Parametric plots can be mixed with other types. For instance, the code

in figure F.1.6 on the facing page produces the plot in figure F.1.7 on the
next page.

F.2. PLOT3D 257

plot2d ([x^2+2 , [parametric , cos (t) , s in (t) ,
[t , −5 , 5]]] , [x , −3 , 3]) ;

FIGURE F.1.6. Code for mixed parametric plot

x

x^2+2
cos(t), sin(t)

 0

 2

 4

 6

 8

 10

-3 -2 -1 0 1 2 3

FIGURE F.1.7. Mixed parametric plot

F.1.7. Contour plots. This involves plotting contour lines for a func-
tion of two variables — these are like isobars on a weather map. The func-
tion to be plotted appears in a list whose first element is the keyword con-
tour. Example:

plot2d ([contour , s in (y) * cos (x) ^ 2] ,
[x , −4 , 4] , [y , −4 , 4]) ;

which produces the plot in figure F.1.8 on the following page. This shows
the level-sets for the function f (x, y) = sin(y) cos(x)2 at f = −0.5, 0, 0.5.

F.2. plot3d

Many of the options for plot2d also apply to plot3d. Other options
include nomesh_lines.

plot3d (expr, x_range, y_range, . . . , options,. . .)
Example:

plot3d (u^2 − v^2 , [u , −2 , 2] , [v , −3 , 3] ,
[grid , 100 , 1 0 0] ,
nomesh_lines) ;

This produces the plot in figure F.2.1 on the next page.

258 F. VISUAL OUTPUTS

y

x

-0.5
0.0
0.5

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

FIGURE F.1.8. Contour plot

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -3

-2

-1

 0

 1

 2

 3

-10

-8

-6

-4

-2

 0

 2

 4

u^2-v^2

u

v

z

FIGURE F.2.1. A 3d plot

If we leave out the nomesh_lines, we get figure F.2.2 on the facing page
(so mesh lines are the default).

Other options:
� elevation — the z-values are compressed or expanded to this

range. Setting [elevation,0] smashes the three-dimensional plot
to two dimensions. See figure F.2.3 on the next page.

� palette — the set of colors to use in the plot. For instance, the
command in figure F.2.4 on the facing page produces the plot in
figure F.2.5 on page 260. The gradient option causes the colors

F.2. PLOT3D 259

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -3

-2

-1

 0

 1

 2

 3

-10

-8

-6

-4

-2

 0

 2

 4

u^2-v^2

u

v

z

FIGURE F.2.2. A 3d plot with mesh

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -3

-2

-1

 0

 1

 2

 3

u^2-v^2

u

v

z

FIGURE F.2.3. Plot with elevation 0

plot3d (u^2 − v^2 , [u , −2 , 2] , [v , −3 , 3] ,
[p a l e t t e , [gradient , red , orange ,

yellow , green]] ,
[grid , 100 , 1 0 0]) ;

FIGURE F.2.4. Plot using palette

260 F. VISUAL OUTPUTS

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -3

-2

-1

 0

 1

 2

 3

-10

-8

-6

-4

-2

 0

 2

 4

u^2-v^2

u

v

z

FIGURE F.2.5. Plot with a color palette

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -3

-2

-1

 0

 1

 2

 3

-10

-8

-6

-4

-2

 0

 2

 4

u^2-v^2

u

v

z
-10

-8

-6

-4

-2

 0

 2

 4

FIGURE F.2.6. Plot with a color-bar

to smoothly transition from low z-values (red) to high z-values
(green). There is also a color_bar option that draws the palette
and gives one an idea of what the colors mean. Adding that option
gives the plot in figure F.2.6 on page 260.

F.4. PLOT-OUTPUTS 261

y

x

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5 1
 0

 5

 10

 15

 20

 25

 30

FIGURE F.3.1. The Mandelbrot set

F.3. Standalone commands

We have two specialized plot commands that can to create graphic ob-
jects.

� julia (x, y, ...options...) — creates a Julia set for the complex num-
ber x + iy. Each pixel in the grid is given a color corresponding
to the number of iterations it takes the sequence that starts at that
point to move out of the convergence circle of radius 2 centered
at the origin. The number of pixels in the grid is controlled by
the grid plot option (default 30 by 30). The maximum number of
iterations is set with the option iterations.

� mandelbrot (options). — Draws a Mandelbrot set with the same
options as Julia. For instance, the command

mandelbrot ([i t e r a t i o n s , 3 0] , [x , −2 , 1] ,
[y , −1 .2 , 1 . 2] ,
[grid , 4 0 0 , 4 0 0])

produces the plot in figure F.3.1.

F.4. Plot-outputs

Gnuplot generates plots on ‘terminals’. If no terminal is specified, it
defaults to ‘x11term’, the computer screen. Other terminals include:

� dumb — tries to do the plot in ASCII-art!
� ps — creates the plot in Postscript, suitable for printing. All of the

plots in this book were done on the ps terminal.

262 F. VISUAL OUTPUTS

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist (j , j , 0 , 1 0 0) , / * l i s t o f i n t e g e r s * /
e x p l i c i t (psi_n (1 0 0 , x , . 0 1 * t) , x,−%pi ,% pi) ,
/ * p l o t * /
yrange= [0 , 1 . 2] / * o p t i o n a l g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE F.5.1. The with_slider_draw command

� svg — Scalable Vector Graphics, best for displaying on web pages.
These images can be easily resized without losing information
(which is why they’re called ‘scalable’).

� png — Portable Network Graphics, a bitmapped format for web
pages.

� jpg — A lossy, compressed format, suitable for web pages (jpg
files for an image are much smaller than png ones for the
same image — sometimes by a factor of 100). This format uses
two-dimensional, discrete Fourier transforms — see section 5.1
on page 75.

� pdf — Portable document format, also good for printing.

This is specified via the command:
[gnuplot_term,"terminal_name"]
One can also specify an output file in square brackets and quotes, like

the terminal. The command:
[gnuplot_out_file,"filename"]
Example:

plot2d (x ^2 , [x , − 5 , 5] , [gnuplot_term , " svg "] ,
[gnuplot_out_file , " zz . svg "])

F.5. The draw commands

The draw-library contains commands that are much more complex
than those of plot2d and plot3d, but allow more complete access to
gnuPlot’s features. We have already seen one command of this library in
section 4.5 on page 61, namely figure F.5.1

Although the draw-library is supposed to be loaded via the

load("draw")

command, this author has found that the draw-commands work without
explicitly loading this library, suggesting that it is loaded by default.

The basic command appears in figure F.5.2 on the facing page.
Global options apply to all of the scenes and include:

� terminal — the type of output. The terminals in the draw-library
are:

F.5. THE DRAW COMMANDS 263

draw (
g lobal_opt ions ,
scene_1 ,
scene_2 ,
. . .
scene_n

) ;

FIGURE F.5.2. Basic draw-command

• screen (default) — the computer screen. Can, optionally, be
coded as [screen,nn], where nn is a number. This allows mul-
tiple windows with plots to be opened at the same time.

• png — Portable Network Graphics. A bitmapped format.
• pngcairo — Portable Network Graphics using the Cairo li-

brary (if it’s present). A bitmapped format that uses antialias-
ing to produce a clearer image.

• jpg — A compressed, lossy format.
• gif — A compressed format with a limited number of colors.
• eps — Encapsulated postscript in black and white (if your

output is meant to be printed, it will probably be in black and
white anyway). eps is like postscript except that the file has
the size of the image specified so it can be displayed with a
minimum of white space around it. The postscript files gen-
erated by the plot commands are actually eps.

• eps_color — Encapsulated postscript in all its colorful glory.
• epslatex — Encapsulated postscript and LATEX code to insert

it into a LATEX document.
• epslatex_standalone — Encapsulated postscript and a LATEX

document to display it.
• svg — Scalable vector graphics. Ideal for web pages.
• canvas — Produces an html file with the graphics, using the

Canvas and gnuPlot javascript libraries. Good for web pages,
although most browsers support SVG.

• dumb — ASCII art!
• dumb_file — ASCII art in a file!
• pdf — produces a PDF document.
• pdfcairo — same as above but uses the Cairo library to pro-

duce an antialiased image.
• wxt — an alternate drawing library. On many systems, this is

a synonym for screen.
• animated_gif — the gif format allows for animated images.
• multipage_pdfcairo — like pdfcairo but spanning multiple

pages.
• multipage_pdf — like pdf but spanning multiple pages.
• multipage_eps — like eps but spanning multiple pages.

264 F. VISUAL OUTPUTS

• multipage_eps_color — like eps_color but spanning multi-
ple pages.

• aquaterm — aquaterm is a graphics terminal for the
Macintosh running MacOS X. Can, optionally, be coded as
[aquaterm,nn], where nn is a number. This allows multiple
windows with plots to be opened at the same time.

� file_name — as mentioned in section F.4 on page 261, except that
the draw library adds its own extension to the name, like ‘pdf’, or
‘eps’ so you don’t have to.

� columns — each scene produces a plot, and multiple plots are
normally stacked on top of each other. columns>1 allows multiple
plots to appear side by side.

These are coded as option=value rather than in a list. Values that are not
arbitrary character strings do not need to be quoted1 unless they are used
as variables in the rest of your program2 in which case they can be quoted
with a single, single quote like ’eps. Example:

draw (
gr2d (

key=" s in (x) " , grid = [2 , 2] ,
e x p l i c i t (

s i n (x) ,
x ,0 ,2*% pi

)
) ,
gr2d (

t i t l e =" zztop " ,
key=" cos (x) " , grid = [2 , 2] ,
e x p l i c i t (

cos (x) ,
x ,0 ,2*% pi

)
)

) ;

This produces two smaller plots, one on top of the other — see figure F.5.4
on the facing page. If we set the global option columns=2, and type the
command in figure F.5.3 on the next page, we get the plots side-by-side
and compressed horizontally in figure F.5.5 on the facing page.

Scenes may take one of two forms:
� gr2d(options) — for a two-dimensional scene. The available op-

tions (besides a function to be plotted) are
• bars ([x1,h1,w1], [x2,h2,w2, . . .]) — draws bars centered at

values x1, x2,. . . with heights h1, h2,. . . and widths w1, w2, . . .
Options: color (see table F.5.1 on page 269 for color-names).

1They are predefined data-items.
2Generally a bad idea!

F.5. THE DRAW COMMANDS 265

draw (
columns =2 ,
gr2d (

key=" s in (x) " , grid = [2 , 2] ,
e x p l i c i t (

s in (x) ,
x ,0 ,2*% pi

)
) ,
gr2d (

t i t l e =" zztop " ,
key=" cos (x) " , grid = [2 , 2] ,
e x p l i c i t (

cos (x) ,
x ,0 ,2*% pi

)
)

) ;

FIGURE F.5.3. Two-column plot

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

sin (x)

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

cos (x)

zztop

FIGURE F.5.4. Drawing two plots in one command

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

sin (x)

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

cos (x)

zztop

FIGURE F.5.5. Drawings with two columns

• ellipse (xc, yc, a, b, ang1, ang2) — plots an ellipse centered at
[xc, yc] with horizontal and vertical semi axis a and b, respec-
tively, starting at angle ang1 and ending at angle ang2. Op-
tions: transparent (= true or false), fill_color, border (= true

266 F. VISUAL OUTPUTS

or false), line_width, key, line_type and color (see table F.5.1
on page 269 for color-names).

• explicit
• image
• implicit
• key — the draw-version of “legend.” key = "string".
• parametric (xfun,yfun,par,parmin,parmax).
• points ([[x1,y1], [x2,y2],. . .]) — Options: point_size,

point_type, points_joined (= true or false), line_width,
key, line_type and color (see table F.5.1 on page 269 for
color-names). Point_types: bullet, circle, plus, times,
asterisk, box, square, triangle, delta, wedge, nabla,
diamond, lozenge.

• polar (radius,ang,minang,maxang) Options color, line_width,
(see table F.5.1 on page 269 for color-names).

• polygon ([x1, x2,. . .], [y1, y2, . . .]) or polygon ([[x1, y1], [x2,
y2], . . .]) — Options color, fill_color, line_width, border (=
true or false) (see table F.5.1 on page 269 for color-names).

• quadrilateral([x1, y1], [x2, y2], [x3, y3], [x4, y4]) — Options:
transparent (= true or false), fill_color, border (= true or
false), line_width, key, xaxis_secondary, yaxis_secondary,
line_type, transform and color (see table F.5.1 on page 269
for color-names).

• title = "string".
• rectangle ([x1,y1], [x2,y2]) — The points are opposite vertices.

Options: transparent (= true or false), fill_color, border (=
true or false), line_width, key, line_type and color (see ta-
ble F.5.1 on page 269 for color-names).

• triangle ([x1,y1], [x2,y2], [x3,y3]) — Options: transparent (=
true or false), fill_color, border (= true or false), line_width,
key, line_type and color (see table F.5.1 on page 269 for color-
names).

• vector([x,y], [dx,dy]) — plots vector [dx,dy] with origin in
[x,y]. Options: head_both (= true or false), head_length,
head_angle, head_type, line_width, line_type, key and
color (see table F.5.1 on page 269 for color-names).

The options explicit or implicit are required if functions are plot-
ted. plot2d automatically decided whether a plot is explicit or
implicit by how one codes it. The draw-library requires you to
specify. Multiple functions can be plotted in the same scene (as
the code in figure F.5.6 on the facing page shows), in which case
they will overlap each other (see figure 13.2.2 on page 223 for an
example of this).

� gr3d(options) — for a three-dimensional scene. The available op-
tions are:
• cylindrical(radius, z, minz, maxz, azi, minazi, maxazi) —

plots the function radius(z, azi) defined in cylindrical coor-
dinates, with variable z taking values from minz to maxz

F.5. THE DRAW COMMANDS 267

draw (
gr2d (

e x p l i c i t (
s in (x) ,
x ,0 ,2*% pi

)
e x p l i c i t (

cos (x) ,
x ,0 ,2*% pi

)
)

) ;

FIGURE F.5.6. Multiple functions in the same scene

and azimuth azi taking values from minazi to maxazi. Op-
tions: xu_grid, yv_grid, line_type, key, wired_surface, en-
hanced3d and color (see table F.5.1 on page 269 for color-
names).

• elevation_grid (mat,x0,y0,width,height) — draws matrix
mat in 3D space. z values are taken from mat, the abscissas
range from x0 to x0 + width and ordinates from y0 to y0 +
height. Element a(1,1) is projected on point (x0,y0+height),
a(1,n) on (x0+width,y0+height), a(m,1) on (x0,y0), and
a(m,n) on (x0+width,y0). Options: line_type, line_width,
key, wired_surface, enhanced3d and color (see table F.5.1
on page 269 for color-names).

• explicit
• implicit
• label
• mesh (row_1,row_2,. . .) — Argument row_i is a list of n

3D points of the form [[x_i1,y_i1,z_i1], ...,[x_in,y_in,z_in]],
and all rows are of equal length. All these points define
an arbitrary surface in 3D. It’s a generalization of the
elevation_grid object. Options: line_type, line_width,
color, key, wired_surface, enhanced3d and transform (see
table F.5.1 on page 269 for color-names).

• parametric
• parametric_surface
• points
• quadrilateral
• spherical
• triangle
• tube (xfun,yfun,zfun,rfun,p,pmin,pmax). Draws a tube in 3D.

(xfun,yfun,zfun,rfun) is the parametric curve with parameter p
taking values from pmin to pmax. Circles of radius rfun(p)
are placed with their centers on the parametric curve and

268 F. VISUAL OUTPUTS

-3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5
-1

-0.5

0

0.5

1

1.5

FIGURE F.5.7. The trefoil knot

perpendicular to it. Options: xu_grid, yv_grid, line_type,
line_width, key, wired_surface, enhanced3d, color and cap-
ping (see table F.5.1 on the next page for color-names). The
command

draw3d (
enhanced3d = true ,
xu_grid =100 ,
tube ((3 + cos (3 * t)) * cos (2 * t) ,

(3+ cos (3 * t)) * s in (2 * t) ,
s i n (3 * t) , . 5 , t ,−%pi ,% pi)

) ;

produces the image of an overhand knot in figure F.5.7.
• vector ([x,y,z], [dx,dy,dz]) — Draws the vector [dx,dy,dz]

starting from [x,y,z]. Options: head_both, head_length,
head_angle, head_type, line_width, line_type, key and
color (see table F.5.1 on the next page for color-names).

The options explicit or implicit are required if functions are plot-
ted. plot2d automatically decided whether a plot is explicit or
implicit by how one codes it. The draw-library requires you to
specify.

Within a scene, plots of functions (not all plots are of functions!) are either
� explicit — plots of functions that you list, or
� implicit — plots defined by equations.

As the examples in figures F.5.4 and F.5.5 on page 265 show, it is usually
better to draw one scene at a time. The following abbreviations make this
easier:

� draw2d(stuff)=draw(gr2d(stuff)) Its options (including global
ones) are identical to those of gr2d.

� draw3d(stuff)=draw(gr3d(stuff)) Its options (including global
ones) are identical to those of gr2d.

Example:

F.5. THE DRAW COMMANDS 269

white black gray0 grey0
gray10 grey10 gray20 grey20
gray30 grey30 gray40 grey40
gray50 grey50 gray60 grey60
gray70 grey70 gray80 grey80
gray90 grey90 gray100 grey100

gray grey light_gray light_grey
dark_gray dark_grey red light_red
dark_red yellow light_yellow dark_yellow

green light_green dark_green spring_green
forest_green sea_green blue light_blue

royalblue skyblue cyan light_cyan
dark_cyan magenta light_magenta dark_magenta
turquoise light_turquoise dark_turquoise pink
light_pink dark_pink coral light_coral
orange_red salmon light_salmon dark_salmon
aquamarine khaki dark_khaki goldenrod

light_goldenrod dark_goldenrod gold beige
brown orange dark_orange violet

dark_violet plum purple "xhhhhhh"
TABLE F.5.1. Colors in the draw-library

Solutions to Selected Exercises

Chapter 1, 1.1 Exercise 1 (p. 7) The number of 5-card sets one can form from a 52-
card deck is binomial(52,5), which is 2598960.

Chapter 1, 1.1 Exercise 2 (p. 7) The command rectform(2/(3+%i)); gives

3
5
− i

5
Chapter 1, 1.1 Exercise 3 (p. 7) The command rectform(3*%i+1/(1−%i)); gives

1
2
+

7i
2

Chapter 1, 1.1 Exercise 4 (p. 7) According to the Binomial Theorem

cos nθ + i sin nθ = (cos θ + i sin θ)n

= cosn θ + n cosn−1 θ · i sin θ +
n(n − 1)

2!
cosn−2 θ · i2 sin2 θ + · · ·

+ n cos θ · in−1 sinn−1 θ + in sinn θ

so the real part of this equation gives

cos nθ = cosn θ − n(n − 1)
2!

cosn−2 θ sin2 θ +
n(n − 1)(n − 2)(n − 3)

4!
cosn−4 θ sin4 θ + · · ·

and the imaginary part gives

sin nθ = n cosn−1 θ sin θ − n(n − 1)(n − 2)
3!

cosn−3 θ sin3 θ + · · ·

Chapter 2, 2.1 Exercise 1 (p. 14) Proposition 2.1.6 on page 12 shows that
gcd(n, m) = 1 if and only if n and m have no primes in common in their
prime-power factorizations.

Chapter 2, 2.1 Exercise 2 (p. 14) Define a function f : Z×
n·m → Z×

n ×Z×
m by mapping

x ∈ Z×
n·m to (x mod n, x mod m) ∈ Z×

n × Z×
m . The Chinese Remainder Theorem

implies that this is 1-1.

Chapter 2, 2.2 Exercise 1 (p. 15) Because ϕ(100) = 40 (use the totient-command),
and 40|1000, so 71000 ≡ 1 (mod 100).

Chapter 3, 3.0 Exercise 1 (p. 28) If we set r:allroots(x^5+2*x-5); we get
equations 3.0.2 on page 28. Now do

map(rhs,r) or map(’rhs,r) and you will get
[1.208917813386895,
0.9409544200647337*%i-1.167042002184508,
-0.9409544200647337*%i-1.167042002184508,
1.234436184384533*%i+0.5625830954910601,
0.5625830954910601-1.234436184384533*%i]
with no x=.

271

272 SOLUTIONS TO SELECTED EXERCISES

Chapter 3, 3.3 Exercise 1 (p. 39) The implicit equation is

x2 + 2 yx2 + 2 y2x2 + yx − y2x − y = 0

Chapter 3, 3.3 Exercise 2 (p. 39) The resultant is

r = 4 y2x2 − x2 + y2

so the implicit equation is r = 0.

Chapter 3, 3.3 Exercise 3 (p. 39) The implicit equation is

−2 y + 1 − 2 x − 2 yx2 + x2 = 0

Chapter 3, 3.3 Exercise 4 (p. 39) The resultant in question is

x4 + 2 x3 + x2 − 4 x = x(x − 1)(x2 + 3x + 4)

It follows that x can have one of the 4 values{
0, 1,

−3 ± i
√

7
2

}
Each of these x-values turns out to correspond to a unique y-value. Our four solu-
tions are

(x, y) =

{
(0, 1) , (1, 0) ,

(
−3 − i

√
7

2
,

3 − i
√

7
2

)
,

(
−3 + i

√
7

2
,

3 + i
√

7
2

)}
The solve-command will also reach this solution.

Chapter 3, 3.3 Exercise 5 (p. 39) We get

Res(s + t − x, s2 − t2 − y, s) = −2xt + x2 − y

Res(s2 − t2 − y, 2s − 3t2 − z, s) = 9 t4 + 6 t2z − 4 t2 − 4 y + z2

Res(s + t − x, 2s − 3t2 − z, s) = −3 t2 − 2 t + 2 x − z

and

R = Res(−2xt + x2 − y,−3 t2 − 2 t + 2 x − z, t) =

− 3 x4 + 4 x3 + 6 x2y − 4 x2z + 4 yx − 3 y2

so the implicit equation is

3 x4 − 4 x3 − 6 x2y + 4 x2z − 4 yx + 3 y2 = 0

If we compute the resultant of 9 t4 + 6 t2z − 4 t2 − 4 y + z2 and −2xt + x2 − y
we get

9 x8 − 36 x6y + 24 x6z − 16 x6 + 54 x4y2

− 48 x4yz − 32 x4y + 16 x4z2

− 36 x2y3 + 24 x2y2z − 16 x2y2 + 9 y4

which turns out to be a multiple of R.

Chapter 4, 4.1 Exercise 1 (p. 49) Use the command

desolve ([’ d i f f (x (t) , t)=3* x (t) −4*y (t) ,
’ d i f f (y (t) , t)=2* x (t)+3* y (t)] , [x (t) , y (t)]) ;

SOLUTIONS TO SELECTED EXERCISES 273

-8 -4 0 4 8

-10

-5

0

5

10

v

z

FIGURE F.5.8. Output of exercise plot

to get

x(t) = −
2 y(0)%e3t sin

(
2

3
2 t
)
−
√

2 x(0)%e3t cos
(

2
3
2 t
)

√
2

y(t) =
x(0)%e3t sin

(
2

3
2 t
)
+
√

2 y(0)%e3t cos
(

2
3
2 t
)

√
2

Chapter 4, 4.1 Exercise 2 (p. 49) Write

dy
dx

= yprime

d yprime
dx

= 3 ∗ yprime3 −2 ∗ y

Chapter 4, 4.1 Exercise 3 (p. 49) First, notice that the ode2-command gives False,
admitting defeat in solving this differential equation exactly. We solve the exercise
by typing:

plotdf (x−y ^2 , [xfun , " s q r t (x) ; − s q r t (x) "] ,
[t r a j e c t o r y _ a t , − 1 , 3] ,
[direct ion , forward] ,
[y , − 5 , 5] , [x , − 4 , 1 6]) ;

It’s interesting to note that the solution-curve approaches
√

x in the limit as x → ∞.
Clicking on other points on the plot shows that this is almost always the case.

Chapter 4, 4.1 Exercise 4 (p. 49)
plotdf ([v , −k * z/m] , [z , v] ,
[parameters , "m=2 ,k = 2 "] ,
[s l i d e r s , "m= 1 : 5 "] ,
[t r a j e c t o r y _ a t , 6 , 0])

To produce figure F.5.8.
If we run this with [versus_t,1], we also get plots of z and v.

Chapter 4, 4.1 Exercise 5 (p. 49) Try expand(%) and ratsimp a second time.

274 SOLUTIONS TO SELECTED EXERCISES

Chapter 4, 4.2 Exercise 1 (p. 52) If v is the velocity-vector, we have

v =

[
vh
vv

]
its vertical and horizontal components. We have equations

m
dvv

dt
= −9.8m

m
dvh
dt

= 0(F.5.1)

where m is the mass of the cannonball. At time zero vv = 1000 sin 30◦ = 500m/sec,
and vh = 1000 cos 30◦ = 866.025. We get

vv = 500 − 9.8t

y = 500t − 4.9t2

The apogee occurs when vv = 0 or at time 500/9.8. This gives a value of y equal to
12755.10204081632.

Chapter 4, 4.2 Exercise 2 (p. 52) If r is the vector representing the air-resistance, we
must have r = −αv, where v is the velocity vector of the cannonball and α > 0 is a
scalar. The constant in equation 4.2.1 on page 52 is 1

2 CDρA = .057575 and we have
|r| = .057575|v|2 so

r = −.057575|v|v
Our equations of motion (equation F.5.1) become

m
dvv

dt
= −9.8m − .057575vv

√
v2

h + v2
v

m
dvh
dt

= −.057575vh

√
v2

h + v2
v(F.5.2)

where the mass is very significant now3. Dividing by the mass of 4kg gives

dvv

dt
= −9.8 − 0.01439375vv

√
v2

h + v2
v

dvh
dt

= −0.01439375vh

√
v2

h + v2
v(F.5.3)

dx
dt

= vh(F.5.4)

dy
dt

= vv(F.5.5)

The first two equations are highly nonlinear, so we must use rk to solve them.

cannon : rk ([−9 .8 −0 .01439375* vv * s q r t (vv^2+vh ^2) ,
−0.01439375*vh* s q r t (vv^2+vh ^2) , vv , vh] , [vv , vh , y , x] ,
[5 0 0 , 8 6 6 . 0 2 5 , 0 , 0] , [t , 0 , 1 0 , . 0 1]) ;

Examining the output show that the apogee occurs at time 2.64 seconds and that y
(the altitude) is 110.389 meters. We can reformat the output-list to graph the can-
nonball’s progress:

height : makel i s t ([e l t [1] , e l t [4]] , e l t , cannon)
plot2d ([d i s c r e t e , height] , [y , 0 , 2 0 0])

We get

3This is why a feather falls more slowly than a cannonball in the Earth’s atmosphere.

SOLUTIONS TO SELECTED EXERCISES 275

y

x

 0

 50

 100

 150

 200

 0 2 4 6 8 10

Chapter 4, 4.6 Exercise 2 (p. 73) Since x and y are independent variables∫ π

−π

∫ π

π
sin (nx) sin (my) · sin (n̄x) sin (m̄y) dxdy

=

(∫ π

−π
sin (nx) sin (n̄x) dx

)(∫ π

−π
sin (my) sin (m̄y) dy

)
so the conclusion follows from equation 4.3.5 on page 54. This is why
two-dimensional Fourier series work; indeed it is why n-dimensional Fourier
series work.

Chapter 5, 5.2 Exercise 1 (p. 80) We could just use definition 5.2.1 on page 78 and
straight computation (ugh!). Or we could use equation 5.2.4 on page 79 and the fact
that multiplication is commutative and associative.

Chapter 5, 5.2 Exercise 2 (p. 80) Because the Fast Fourier Transform algorithm re-
quires the length of the sequences to be a power of 2.

Chapter 5, 5.2 Exercise 4 (p. 80) Since the result will be of degree 9, the sequence of
coefficients will be of length 10. The next higher power of 2 is 24 = 16. Let

load (" f f t ") ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
A : [2 , − 4 , 1 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ;
i a : i n v e r s e _ f f t (A) ;
i a 3 : i a ^3; /* element by element operat ion */
A3 : r e a l p a r t (f f t (i a 3)) ;
[8 . 0 , − 4 8 . 0 , 1 0 8 . 0 , − 1 2 4 . 0 , 1 0 2 . 0 , − 7 2 . 0 , 3 1 . 0 , − 1 5 . 0 , 3 . 0 , − 1 . 0 ,
−2.132*10^ −14 ,2.842*10^ −14 , −2.132*10^ −14 ,
1 .421*10^ −14 ,0 , −3.553*10^ −15]

The terms after the 10th are due to round-off errors. The result is

8 − 48x + 108x2 − 124x3 + 102x4 − 72x5 + 31x6 − 15x7 + 3x8 − x9

which you can verify by (tedious!) direct computation.

Chapter 7, 7.1 Exercise 2 (p. 107) In Manifold Theory and Differential Geometry
(see [3]), volumes have an orientation. In Rn the standard orientation is

{x1, . . . , xn}

and if you swap any pair of axes, the result has a negative orientation.

Chapter 7, 7.2 Exercise 3 (p. 109) Just form the matrix

P =

 8 −1 2
4 0 1
3 −1 1



276 SOLUTIONS TO SELECTED EXERCISES

and compute

(P−1).A.P =

 −27 5 −8
53 −10 15

137 −25 40


Chapter 7, 7.4 Exercise 1 (p. 120)

(F.5.6) An =

 −2n+2 − 3n+1 + 8 3n − 1 −3n − 2n + 2
2n+3 − 8 1 2n+1 − 2

5 · 2n+2 + 4 · 3n+1 − 32 4 − 4 · 3n 4 · 3n + 5 · 2n − 8


Chapter 7, 7.4 Exercise 2 (p. 120) Just plug n = 1/2 into equation F.5.6 to get

√
A =

 −4
√

2 − 3
√

3 + 8
√

3 − 1 −
√

3 −
√

2 + 2
8
√

2 − 8 1 2
√

2 − 2
20
√

2 + 12
√

3 − 32 4 − 4
√

3 4 ·
√

3 + 5
√

2 − 8


Chapter 7, 7.5 Exercise 2 (p. 131) We know

x

[
1 2
3 4

]
= e

(
log(x)·

[
1 2
3 4

])

= e

[
log(x) 2 log(x)

3 log(x) 4 log(x)

]

We type

z : matrix ([log (x) , 2 * log (x)] , [3 * log (x) , 4 * log (x)]) ;
a : matrixexp (z) ;

and get a very messy and convoluted expression that none of our normal simplifi-
cation commands improve until we type

radcan (a) ;

which gives

−
(
√

3
√

11−11)x
√

3
√

11+2+(−
√

3
√

11−11)x2

22x
√

3
√

11−1
2

2
√

3
√

11x
√

3
√

11+2−2
√

3
√

11x2

33x
√

3
√

11−1
2√

3
√

11x
√

3
√

11+2−
√

3
√

11x2

11x
√

3
√

11−1
2

(
√

3
√

11+11)x
√

3
√

11+2+(11−
√

3
√

11)x2

22x
√

3
√

11−1
2


We can further simplify this by hand.

Chapter 7, 7.6 Exercise 1 (p. 135) We begin with j=number of jackets and p=number
of pants. The objective function is

3p + 2j

Our constraints are
8p + 4j ≤ 60

and
4p + 8j ≤ 48

So we formulate this as

maximize_lp (3 * p+2* j , [8 * p+4* j <=60 ,4*p+8* j <=48])

and Maxima comes back with

[24 , [p = 6 , j = 3]]

SOLUTIONS TO SELECTED EXERCISES 277

Chapter 7, 7.6 Exercise 2 (p. 136) It’s a good idea to restart Maxima (using that com-
mand on the Maxima menu) and reload the simplex library. We set

p=potatoes,c=corn. The profit (objective function) is

150p + 50c

and the constraints are

20p + 60c ≤ 3000
p + c ≤ 70

As before, we write

maximize_lp (1 5 0 * p+50* c , [2 0 * p+60* c <=3000 ,p+c <=70])

and get
Problem not bounded!
Potatoes are so profitable, it’s worthwhile to grow “negative” corn to increase

the production of potatoes. We must insist that negative potatoes and corn do not
exist!

maximize_lp (1 5 0 * p+50* c , [2 0 * p+60* c <=3000 ,p+c <=70 ,p>=0 ,c >=0])

and get
[10500 , [p = 70 , c = 0]]

so there’s no point in planting any corn!
Chapter 8, 8.1 Exercise 1 (p. 147) Equation 8.1.1 on page 144 implies that

Σx(−i) = E
x(1−i)

1 − i
In the case where i = 1, we get

Σn
0 x(−1) = 1 +

1
2
+ · · ·+ 1

n + 1
= Hn+1

the n + 1st Harmonic number. This shows that the harmonic numbers play a part in
finite-difference calculus similar to that of the logarithm in regular calculus.

Chapter 8, 8.1 Exercise 2 (p. 147) There’s nothing to prove if n = 0, 1. Assume it has
been proved for all values of n < k, and we want to proved it for xk. The lowest-
degree falling factorial that contains a term of xk is x(k), and it contains a single term
of xk. It follows that

xk − x(k)

consists of a linear combination of powers xi with i < k. By the induction hypothe-
sis

xk − x(k) =
k−1

∑
i=0

aix(i)

with ai ∈ Z, and

xk = x(k) +
k−1

∑
i=0

aix(i)

Chapter 8, 8.1 Exercise 3 (p. 147) Straight (somewhat tedious) computation.
Chapter 8, 8.1 Exercise 5 (p. 147) Since the equation is linear, proving it for some
class of functions proves it for all possible linear combinations of these functions. It’s
sufficient to prove for f (x) = xn for all integers n ≥ 0. Since these functions are
linear combinations of falling factorials (exercise 2 on page 147), it suffices to prove

278 SOLUTIONS TO SELECTED EXERCISES

it for all falling factorials x(n) with n an integer ≥ 0. If we set a = 0 in equation 8.1.4
on page 144, we get

S = 0 + ∆[x(n)](0)(x)(1) +
∆2[x(n)](0)(x)(2)

2!
+

∆3[x(n)](0)(x)(3)
3!

+ · · ·

Now

∆i[x(n)](0)(x)(i) = n(n − 1) · · · (n − i + 1)x(n−i)(0) =


0 if i < n
n! if i = n
0 if i > n

so S = x(n).

Chapter 8, 8.1 Exercise 6 (p. 147) Just write ∆ = E − 1 and plug it in:

(E − 1)(f g) = E(f)E(g)− f g

= (E(f)− f) E(g) + f E(g)− f g

= (E(f)− f) E(g) + f · (Eg − g)

= ∆ f E(g) + f ∆g

Chapter 8, 8.1 Exercise 7 (p. 147) Just plug equation 8.1.7 on page 147 into Σb
a and

rearrange terms.

Chapter 8, 8.1 Exercise 8 (p. 148) Yes. Consider the vector-space spanned by {xn}
for n an integer ≥ 0. In this vector-space, the operators E, ∆, and D are (infinite)
matrices and equation 8.1.6 on page 145 is literally true.

Chapter 8, 8.1 Exercise 9 (p. 148) Set f (x) = x and g(x) = 2x. Then ∆g = g, ∆ f = 1,
and we get

Σn
0 f ∆g = E(f g)(n)− (f g)(0)− Σn

0 E(g)∆ f

= (n + 1)2n+1 −
n

∑
k=0

2k+1‘

= (n + 1)2n+1 − 2
n

∑
k=0

2k

= (n + 1)2n+1 − 2(2n+1 − 1)

= (n + 1)2n+1 − 2n+2 + 2

Chapter 8, 8.1 Exercise 10 (p. 148) This is easier than it looks. Code

z (n) : = ratsimp (1 − t ^n)/(1 − t))

Then

z (3)

produces

t2 + t + 1

It’s not hard to see that for n > 0 an integer,

1 − tn

1 − t
= 1 + t + · · ·+ tn−1

Integrating this gives the conclusion.

Chapter 8, 8.2 Exercise 4 (p. 152) You can just write

SOLUTIONS TO SELECTED EXERCISES 279

Bdeltan (f , x ,m) := buildq ([y : x , g : f , n :m] ,
lambda ([y] ,
sum((− 1) ^ (k +1)* binomial (n , k) * g (y+k) ,

k , 0 , n))
) ;

or (more efficiently)

Bdeltan (f , x ,m) := buildq ([y : x , g : f , n :m] ,
lambda ([y] ,
−sum((−1)^ k * binomial (n , k) * g (y+k) ,

k , 0 , n))
) ;

Chapter 9, 9.5 Exercise 1 (p. 161) Typing

poly_reduced_grobner ([x^2+y^2 , x^3−y ^ 4] , [x , y])

returns [
y2 + x2, y4 + xy2, y6 + y4

]
so the original equations are equivalent to

y2 + x2 = 0

y4 + xy2 = 0

y6 + y4 = 0

The last equation implies that y = 0,±i. The first equation implies that, if y = 0,
then x = 0. The second equation implies that, if y = ±i, then x = 1. So the solutions
to the original equations are

x = y = 0,

x = 1,y = ±i

So there are a total of three solutions.

Chapter 9, 9.5 Exercise 2 (p. 161) Define an ideal and type

poly_reduced_grobner ([a1 * a2−b1 * b2+a1 −1 ,
a2 * b1+a1 * b2+b1 −1/2 , a1^2+b1^2 −1 , a2^2+b2 ^2 −1] , [a1 , b1 , a2 , b2])

to get [
64b22 − 55,−4b2 + 10a1 − 5,−16b2 − 20b1 + 5, 8a2 + 3

]
from which we deduce that a2 = −3/8 and b2 can be either +

√
55/8 in which case

a1 = 1/2 +
√

55/20

b1 = 1/4 −
√

55/10

or −
√

55/8 in which case

a1 = 1/2 −
√

55/20

b1 = 1/4 +
√

55/10

The solve-command also works in this case.

280 SOLUTIONS TO SELECTED EXERCISES

Chapter 9, 9.5 Exercise 3 (p. 161) Make this into an ideal problem:
Create an ideal(

(a2 + 1)(b2 + 1) + 25 − 10(a + b), ab − 1, a3 + b3 − z
)

and find a Gröbner basis with a ≻ b ≻ z:
Typing

poly_reduced_grobner ([(a ^2+1)* (b^2+1)+25 −10*(a+b) ,
a^3+b^3−z , a *b − 1] , [a , b , z]) ;

gives [
−bz + 72b2 − 250b + 72,−z2 + 220z − 12100,−z + 72b + 72a − 250

]
and

solve (−z^2+220*z −12100=0 , z) ;

gives z = 110.

Chapter 9, 9.5 Exercise 4 (p. 161) Type

poly_reduced_grobner ([x^2+x * y+y^2 −39 ,
y^2+y * z+z^2 −49 ,z^2+z * x+x ^2 −19] , [x , y , z]) ;

to get [
−7z3 + 58z + 3y,−7z4 + 64z2 − 9, 7z3 − 67z + 6x

]
and type

solve (−7* z^4+64*z^2 −9 ,z) ;

to get [
z = − 1√

7
, z =

1√
7

, z = −3, z = 3
]

Now you can solve for the x and y values that go with these z-values:

� If z = −1/
√

7, then y = 19/
√

7, x = −11/
√

7.
� If z = 1/

√
7,then y = −19/

√
7, x = 11/

√
7 .

� If z = 3, then y = 5, x = 2.
� If z = −3, then y = −5, x = −2.

Chapter 9, 9.5 Exercise 5 (p. 162) Type

poly_reduced_grobner ([a1 * x1^5 + a2 * x2^5 + a3 * x3^5 − 1/6 ,
a1 * x1^4 + a2 * x2^4 + a3 * x3^4 − 1/5 ,
a1 * x1^3 + a2 * x2^3 + a3 * x3^3 − 1/4 ,
a1 * x1^2 + a2 * x2^2 + a3 * x3^2 − 1/3 ,
a1 * x1 + a2 * x2 + a3 * x3 − 1/2 ,
a1 + a2 + a3 − 1] ,
[x1 , x2 , x3 , a1 , a2 , a3]) ;

to get a basis that contains the term

162 · a22 − 117 · a2 + 20

The command

solve (1 6 2 * a2 ^2 −117* a2 +20=0 , a2) ;

SOLUTIONS TO SELECTED EXERCISES 281

produces [
a2 =

5
18

, a2 =
4
9

]
Adding a2-4/9 to the original list produces a Gröbner basis of[

9 · a2 − 4, 5 − 18 · a3, 1 − 2 · x2, 5 − 18 · a1,−x3 − x1 + 1,−10 · x32 + 10 · x3 − 1
]

From which it is straightforward to get all the other values.
Chapter 10, 10.2 Exercise 1 (p. 172) Run the Maxima command

poly_reduced_grobner ([a5 * a4 * a3−a5 * b4 * b3+a5 * a4−x ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4−y ,
b4 * a3+a4 * b3+b4−z ,
x^2+y^2+z^2−r ^2 ,
a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2 , x , y , z , r]) ;

and, in the long list of expressions in the Gröbner basis there is

−r4 + 4 ∗ r2 − 4 ∗ b32

Since b32 ≥ 0, we must have −r4 + 4r2 ≥ 0 or r ≤ 2. We could have come to the
same conclusion by the fact that the robot-arm has two links of length 1!

Chapter 12, 12.1 Exercise 1 (p. 191) We get

(x)m =
Γ(x + 1)

Γ(x − m + 1)

If x and m are integers and m > x, then the denominator is Γ evaluated at 0 or a
negative integer, which is infinite, so the quotient will be 0.

Chapter 12, 12.1 Exercise 2 (p. 191) Unfortunately, the gamma command just
crashes if it’s fed an argument that is a nonpositive integer (i.e., it doesn’t return
inf). We must first check that case and return 0. We get

f f (x ,m) := block (
[a : imagpart (x−m+1) , b : r e a l p a r t (x−m+ 1)] ,
i f (a = 0 and (b <=0) and # Test f o r

#a negat ive
r e a l i n t e g e r

abs (mod(b , 1)) < . 0 0 0 0 0 1)
then return (0) ,

gamma(x+1)/gamma(x−m+1)
) ;

If x and m are integers and m > x, then the denominator is Γ evaluated at 0 or a
negative integer, which is infinite, so the quotient will be 0.

Chapter 12, 12.1 Exercise 3 (p. 192) Use the Γ-function! Our formula in the exercise
becomes

dkxn

dxk =
Γ(n + 1)

Γ(n − k + 1)
xn−k

and
d1/2x
dx1/2 =

x1/2
√

π/2
=

2x1/2
√

π

282 SOLUTIONS TO SELECTED EXERCISES

ja
c
o
b
i_

s
d
(x

,0
.9

)

jacobi_cd(x,0.9)

-3

-2

-1

 0

 1

 2

 3

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

FIGURE F.5.9. Plot of ellipse,same_xy

Chapter 12, 12.1 Exercise 4 (p. 192) Use the Γ-function! Our formula in the exercise
becomes

d1/2xn

dx1/2 =
n!

Γ(n + 1/2)
xn−1/2

so
d1/2ex

dx1/2 =
∞

∑
n=0

xn−1/2

Γ(n + 1/2)

Although this function has a singularity at x = 0, it actually converges to ex for
larger values of x.

Chapter 12, 12.2 Exercise 1 (p. 197) Use the command

plot2d ([parametric , j a c o b i _ c d (x , . 9) , j a c o b i _ s d (x , . 9) ,
[x , 0 , 1 0]] , same_xy , [s t y l e , [l i n e s , 2 , 5]]) ;

to get the plot in figure F.5.9. If we leave out the ‘same_xy’ we get the
well-proportioned but distorted plot in figure F.5.10 on the facing page.

Chapter 12, 12.2 Exercise 3 (p. 197) If the starting angle is 180◦, the pendulum is ver-
tical. This is an unstable equilibrium (very!), and the pendulum can theoretically
remain in this position forever.

Chapter 12, 12.5 Exercise 2 (p. 207) Using Euler’s formula

eix = cos x + i sin x

we get

E1(ix) = i
(
−π

2
+ Si(x)

)
− Ci(x)

Chapter 12, 12.6 Exercise 2 (p. 209) First, code a function

tow (x) := − lambert_w (− log (x)) / log (x) ;

Basic experimentation shows that

f l o a t (sqr t (2) + . 0 3 0 4 5 4 2 9 8 6 3 6 6 7 1))

SOLUTIONS TO SELECTED EXERCISES 283

ja
c
o
b
i_

s
d
(x

,0
.9

)

jacobi_cd(x,0.9)

-3

-2

-1

 0

 1

 2

 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE F.5.10. Plot without same_xy

is still real, and that its value is

2.718281776395266

which leads one to suspect that the maximum finite value of t∞(x) is e. Note, this
is not a local maximum, so taking the derivative of t∞(x) and setting it to 0 will not
work.

The value where this occurs is

v =
√

2 + .030454298636671 = 1.444667861009766

If we randomly play around with this value, we eventually find

1
log(v)

= 2.718281828459046

so
v = e

1
e

And, if we type

tow(%e^(1/%e))

we get

%e

as implied by equation 12.6.4 on page 209.

Chapter 12, 12.6 Exercise 3 (p. 210) Typing

x : tow (3)

gives

− lambert_w (− log (3))
log (3)

and

f l o a t (%)

284 SOLUTIONS TO SELECTED EXERCISES

gives

−0.9102392266268373 · (1.391335054072608 · %i − 0.2524062904251475)

The command

rect form (%)

gives
y = 0.2297501065923352 − 1.26644774359786 · %i

What has happened here? Clearly the infinite power tower

333. . .

isn’t well-defined. The point is that we have solved the equation

y = 3y

which is still well-defined even when the power-tower is not. The solution, y, is a
value with the property that

y1/y = 3

If you type

y^(1/y)

you get

(0.2297501065923352 − 1.26644774359786 · %i)
1

0.2297501065923352−1.26644774359786·%i

and

rect form (%)

gives
6.661338147750939 · 10−16 · %i + 3.0

where the imaginary part is round-off error.
Chapter 13, 13.2 Exercise 2 (p. 224) Since

p(x) = π(x) + π(x1/2)/2 + π(x1/3)/3 + · · ·
we get

p(x)− p(x1/2)/2 = π(x) + π(x1/3)/3 + π(x1/5)/5 · · ·
and

p(x)− p(x1/2)/2 − p(x1/3)/3 − p(x1/5)/5 + p(x1/6)/6

= π(x) + π(x1/7)/7 + · · ·

where, at each step the sum on the left consists of terms with the primes already
covered and the sum on the right consists of none of those primes.

Chapter E, E.5 Exercise 1 (p. 241) Write a function (look at equation 2.1.1 on
page 10)

i s _ a n _ i n t e g e r (x) : = i s (mod(x , 1) = 0) ;

Actually, if x is a real number involved in computations, it might be better to write

i s _ a n _ i n t e g e r (x) : = i s (mod(x , 1) < . 0 0 0 0 0 0 1) ;

If x can be a complex number, it might be better to write

SOLUTIONS TO SELECTED EXERCISES 285

i s _ a n _ i n t e g e r (x) : = i s (abs (imagpart (x)) < . 0 0 0 0 0 0 1)
and i s (mod(r e a l p a r t (x) , 1) < . 0 0 0 0 0 0 1) ;

Index

abs-function, 3
acos(x)-function, 240
LEONARD ADLEMAN, 16
affine group, 131
SIR GEORGE BIDDELL AIRY, 202
Fourier transform of Ai(x), 202
Airy’s differential equation, 201
airy_ai(x), 201
airy_bi(x), 201
airy_dai(x), 201
airy_dbi(x), 201
allroots-command, 28
anonymous functions, 29
append-command, 241
appendfile-command, 248
args-command, 239
asin(x)-function, 240
assoc-command, 241
assume-command, 32
atan(x)-function, 240
atan2(y,x)-function, 240
atto-fox problem, 52

basis
ideal, 155
vector-space, 107

batchload-command, 248
DANIEL BERNOULLI, 189
FRIEDRICH WILHELM BESSEL, 198
Bessel’s differential equation, 198
bessel_j-function, 199
bessel_y-function, 200
beta-command, 191
ÉTIENNE BÉZOUT, 11
Bézout’s Identity, 10
bffac-command, 191
bfloat-command, 4
binomial-command, 4
block-statement, 32
Bonnet’s Recursion Formula, 91
GEORGE BOOLE, 146
BRUNO BUCHBERGER, 157
Buchberger’s algorithm, 159

buildq-command, 246

cabs-function, 6
Carmichael function, 17
Carmichael λ-function, 17
Cauchy principal value, 202
Cayley-Hamilton Theorem, 120
ceiling-command, 235
cf-command, 21
cfdisrep-command, 22
cflength-parameter, 22
characteristic polynomial of a matrix, 117
charpoly-command, 117
PAFNUTY LVOVICH CHEBYSHEV, 92
Chebyshev Polynomials, 91
chinese-command, 14
closefile-command, 248
column-stochastic matrix, 126
columnspace-command, 105
comments in Maxima, 29
commutative ring, 153
congruence modulo a number, 12
cons-command, 242
continued fraction, 21
continued fractions

standard form, 21
convolution, 78
JAMES WILLIAM COOLEY, 77
copylist-command, 242
copymatrix-command, 102
cos(x)-function, 240
cosine-integral, 205
create_list-command, 242

JEAN-BAPTISTE LE ROND D’ALEMBERT,
65

GEORGE BERNARD DANTZIG, 134
declare-command, 53
delete-command, 242
demoivre-command, 130
derivative-command, 29
desolve-command, 46
determinant, 105
determinant-command, 106

287

288 INDEX

dgeev-command, 123
dgemm-command, 124
dgeqrf-command, 124
dgesv-command, 124
diff-command, 29
BAILEY WHITFIELD ’WHIT’ DIFFIE, 16
digital signatures, 19
directory-command, 249
discrete Fourier transforms, 77
discrete logarithm problem, 20
display-command, 247
division ring, 153
dot product for vectors, 101
draw-library, 262
draw-terminals, 262
draw2d-command, 268
draw3d

vector, 268
draw3d-command, 268

echelon-command, 104
eigen library, 111
eigenvalue, 116
eigenvalues-command, 117
eigenvector, 116
eigenvectors-command, 118
eivals-command, 117
elliptic function

jacobi_cs, 196
jacobi_dc, 196
jacobi_dn, 196
jacobi_ds, 196
jacobi_nd, 196
jacobi_ns, 196
jacobi_sc, 196
sn(x, k), 195

elliptic integral
general, 192
incomplete, first kind, 192
incomplete, second kind, 197
incomplete, third kind, 197
modulus, 192

elseif-command, 32
endcons-command, 243
Euclid Algorithm, 10
Euler

ϕ-function, 15
LEONHARD EULER, 6
Euler Reflection equation, 190
Euler reflection formula, 190
Euler’s Formula for harmonic numbers,

148
Euler’s zeta-function, 211
example-command, 3
expand-command, 6
expintegral_ci-command, 205
expintegral_e1-command, 204
expintegral_ei-command, 203

expintegral_li-command, 202
expintegral_si-command, 205
explicit plots, 63
exponential integrals, 203
exponentialize-command, 130
exponentials of matrices, 129

factor-command, 3
!-command, 3
factorial-command, 3
falling factorial, 144, 191
Fast Fourier Transform, 77
feasible region, 133
feasible solutions, 133
PIERRE DE FERMAT, 9
Fermat factorization, 235
Fermat’s Little Theorem, 15
field, 154
file_search-command, 248
first-command, 243
firstn-command, 243
float-command, 4
floor-command, 235
for-commands, 240
JEAN-BAPTISTE JOSEPH FOURIER, 53
Fourier Series, 56
Fourier Transform, 76
fpprintprec-command, 78
:=-command, 239
functional programming languages, 148
Fundamental Theorems of

finite-difference calculus, 144

Γ-function, 189
gamma-command, 189
gamma_incomplete-command, 191
gamma_incomplete_lower-command,

191
gamma_incomplete_regularized-

command, 191
CARL FRIEDRICH GAUSS, 104
Gauss-Laguerre quadrature formula, 96
Gaussian Elimination, 103
gcd, 10
general elliptic integral, 192
genmatrix(ident,nrows,ncols)-command,

101
Gibbs Phenomena, 58
Gimbel Problem, 178
Google’s page rank algorithm, 125
gr2d

bars, 264
ellipse, 265
parametric, 266
points, 266
polar, 266
polygon, 266
quadrilateral, 266

INDEX 289

rectangle, 266
triangle, 266
vector, 266

gr2d-command, 264
gr3d

cylindrical, 266
elevation_grid, 267
mesh, 267
tube, 267

gr3d-command, 266
graded reverse lexicographic ordering,

158
Gram-Schmidt Algorithm, 112
gramschmidt-command, 112
greatest common divisor, 10
JAMES GREGORY, 145
Gregory–Newton interpolation formula,

145
Gröbner basis, 157

leading term, 157
group

affine, 131

WILLIAM ROWAN HAMILTON, 120
Hamming weight, 18
harmonic analysis, 56
Harmonic numbers, 146
Heavyside functions, 83
MARTIN EDWARD HELLMAN, 16
CHARLES HERMITE, 97
Hermite polynomials, 96
DAVID HILBERT, 161
hyperbolic cosine integral, 206
hyperbolic sine integral, 206

ic1-command, 43
ic2-command, 44
ideal, 155

maximal, 155
prime, 155
principal, 155
product, 155

ideal basis, 155
ident(n)-command, 101
identifiers, 5
if-command, 240
if-statement, 32
ifactors-command, 11
igcdex-command, 11
imagpart-function, 6
implicit plots, 63
infinite power tower, 208
integers, 154

unique factorization, 11
integral

Cauchy principal value, 202
inv_mod-command, 13
is-command, 240

isqrt-command, 235

CARL GUSTAV JACOB JACOBI, 192
Jacobi’s elliptic functions, 192
join-command, 243
julia-command, 261

key-distribution, 17
kill-command, 64
MARTIN WILHELM KUTTA, 47

L2-convergence, 58
EDMOND NICOLAS LAGUERRE, 95
Laguerre polynomials, 93
lambda-command, 29
JOHANN HEINRICH LAMBERT, 208
Wm(z), 207
Lambert-W function, 207
lapack-library, 122
PIERRE-SIMON, MARQUIS DE LAPLACE,

81
Laplace Transform, 80
last-command, 243
lastn-command, 243
lcm, 10
least common multiple, 10
Lebesgue measure

outer, 106
ADRIEN-MARIE LEGENDRE, 88
Legendre Polynomials, 88
Legendre polynomials

Bonnet’s Recursion Formula, 91
length-command (for a list), 243
length-command (for a matrix), 100
Leslie Matrix, 121
lexicographic ordering, 158
lhs-command, 239
library

eigen, 111
fft

fft-command, 78
inverse_fft-command, 78

grobner, 160
poly_grobner-command, 160
poly_reduced_grobner-command,

160
lapack, 122

dgeev-command, 123
dgemm-command, 124
dgeqrf-command, 124
dgesv-command, 124
zgeev-command, 124
zheev-command, 124

orthopoly, 89
simplex, 134

linear_program, 135
maximize_lp, 134
minimize_lp, 135

290 INDEX

limit-command, 36
linear programming

feasible region, 133
feasible solutions, 133
linear_program-command, 135
maximize_lp-command, 134
minimize_lp-command, 135
objective function, 133
simplex algorithm, 134

linear regression, 113
linear_program-command, 135
link matrix, 126
list data structure, 27
listp-command, 243
load-command, 248
log_gamma-command, 191
logarithmic integral, 202
logcontract-command, 45
Logistic Curve, 45
Logistics Equation, 44
ALFRED JAMES LOTKA, 50
lower-triangular matrix, 103
lreduce-command, 243

::=-command, 245
macroexpand-command, 247
macroexpand1-command, 247
makelist-command, 243
makelist-command, 63
mandelbrot-command, 261
map-command, 243
matrix

accessing elements, 100
characteristic polynomial, 117
column space, 105
determinant, 105, 106
exponentiation, 102
lower-triangular, 103
multiplication, 100
upper-triangular, 103

matrix-command, 100
matrixexp-command, 129
maximal ideal, 155
maximize_lp-command, 134
member-command, 244
memoization, 64
memoizing, 64
RALPH C. MERKLE, 19
CLAUDE GASPARD BACHET DE

MÉZIRIAC, 10
Michaelis–Menten kinetics, 208
minimize_lp-command, 135
mod-command, 10

real numbers, 10
modulus of an elliptic integral, 192
AUGUST FERDINAND MÖBIUS, 222
moebius-command, 222
monomial

graded reverse lexicographic ordering,
158

lexicographic ordering, 158
.-operator for matrices, 100
Möbius function, 222
Möbius Inversion Theorem, 222

newdet-command, 106
ISAAC NEWTON, 143
next_prime (n), 11
norm of a vector, 109
nullspace-command, 105
numeric integration, 291
numeric solutions to differential

equations, 47

objective function, 133
ode2-command, 43
omega function, 207
op-command, 239
order of a Bessel function, 198
ordering of monomials, 157
orthogonal group, 132
orthogonal matrix, 131
orthonormal set of vectors, 110
orthopoly

chebyshev_t, 92
hermite, 96
laguerre, 93
legendre_p, 89

outer Lebesgue measure, 106

page rank algorithm
Google, 125

ϕ-function, 15
physicist’s Hermite polynomials, 96
plot-terminals, 261
plot2d-command

’discrete’ option, 48
plot2d-command, 29
plotdf-command, 41
LEO AUGUST POCHHAMMER, 144
Pochhammer symbols, 144, 191
pointwise convergence, 58
BARON SIMÉON DENIS POISSON, 233
Poisson Summation formula, 233
polform-command, 5
polynomial ring, 154
polynomials

resultant, 37
pop-command, 244
^^-command, 102
power method, 127
power_mod-command, 13
powerseries-command, 30
Predicate functions, 240
prev_prime (n), 11
prime ideal, 155

INDEX 291

prime number, 11
primep(n)-command, 11
primep_number_of_tests-parameter, 11
primes(n,m), 11
primitive root, 19
principal ideal, 155
print-command, 248
printfile-command, 249
private key, 19
Product Formula, finite differences, 147
product logarithm, 207
product of ideals, 155
psi-command, 191
public key, 19
Puma 560 robot arm, 166
push-command, 244

quad_qag-command, 34
quote-command, 34

ratsimp-command, 44
realpart-function, 6
rectform-command, 5
relatively prime, 13
rest-command, 244
resultant of polynomials, 37
resultant-command, 37
return-command, 33
reverse-command, 244
rhs-command, 239
GEORG FRIEDRICH BERNHARD

RIEMANN, 211
Riemann hypothesis, 217
Riemann reflection formula, 214
ring, 153

commutative, 153
polynomial, 154
subring, 154
trivial, 154

RONALD LINN RIVEST, 16
rk-command, 47
rowop-command, 103
rowswap-command, 103
rreduce-command, 244
RSA-encryption algorithm, 17
CARL DAVID TOLMÉ RUNGE, 47
Runge-Kutta algorithm, 47

save-command, 249
scientific notation, 4
ADI SHAMIR, 16
Sigmoid Curve, 45
simplex algorithm, 134
simplification

exponentialize, 130
logcontract, 45
radcan, 44
ratsimp, 44

trigrat, 130
trigreduce, 67, 130
trigsimp, 130

sin(x)-function, 240
sine integral, 205
solve-command, 25
sort-command, 244
span of a set of vectors, 105
special orthogonal matrices, 132
splice-command, 246
Stigler’s law of eponymy, 104
stringout-command, 249
sublist-command, 245
sublist_indices-command, 245
subring, 154
subst-command, 27, 239
sum-command, 58
Summation by Parts, 148
JAMES JOSEPH SYLVESTER, 37

tan(x)-function, 240
NICCOLò FONTANA TARTAGLIA, 26
taylor-command, 30
totient, 15
totient(n)-command, 15
transpose-command, 101
tree_reduce-command, 245
triangularize-command, 104
trigrat-command, 130
trigreduce-command, 67, 130
trigsimp-command, 130
trivial ring, 154
JOHN WILDER TUKEY, 78

__-command, 248
unique factorization of integers, 11
unique-command, 245
unit vector, 109
unitvector-command, 111
upper-triangular matrix, 103

vector
norm, 109
unit, 109

vectors
orthonormal, 110

PIERRE-FRANÇOIS VERHULST, 46
VITO VOLTERRA, 50

W-function, 207
while-command, 240
Wilbraham-Gibbs constant, 205
with_slider_draw-command, 62
with_stdout-command, 250
writefile-command, 250

zeromatrix(m,n)-command, 101
ζ-function, 211
zeta-function, 211

292 INDEX

zgeev-command, 124
zheev-command, 124
zn_add_table(n)-command, 13
zn_carmichael_lambda-command, 18
zn_log-command, 20
zn_mult_table(n)-command, 13
zn_order-command, 18
zn_primroot-command, 20
zn_primroot_limit-parameter, 20

Bibliography

[1] Lars Ahlfors. Complex Analysis. McGraw-Hill Education; 3rd edition,
1979.

[2] W. W. Rouse Ball. A short account of the history of mathematics. E-book
number 31246.
http://www.gutenberg.org: Project Gutenberg, 2010.

[3] Dennis Barden and Charles B Thomas. An Introduction To Differential
Manifolds. ICP, 2003. ISBN: 1860943551.

[4] Étienne Bézout. “Sur le degré des équations résultantes de
l’évanouissement des inconnues et sur les moyens qu’il convient
d’employer pour trouver ces équations.” In: Histoire de l’académie
royale des sciences (1764), pp. 288–338.

[5] George Boole. A Treatise on the Calculus of Finite Differences. Cosimo
Classics, 2007. ISBN: 978-1602063044.

[6] Sergey Brin and Lawrence Page. The Anatomy of a
Large-Scale Hypertextual Web Search Engine. Google. URL:
http://infolab.stanford.edu/~backrub/google.html.

[7] Kurt Bryan and Tanya Leise. The $25,000,000,000 Eigenvector;
The Linear Algebra Behind Google. English. Rose-Hulman
Institute of Technology. URL: https : / / www . rose -
hulman.edu/~bryan/googleFinalVersionFixed.pdf.

[8] Bruno Buchberger. “A Criterion for Detecting Unnecessary Reduc-
tions in the Construction of Gröbner Bases.” In: Proceedings of the
International Symposium on Symbolic and Algebraic Manipulation (EU-
ROSAM ’79). 1979.

[9] Bruno Buchberger. “Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenrings nach einem nulldimensionalen Polyno-
mideal.” PhD thesis. Johannes Kepler University of Linz (JKU), RISC
Institute., 1965.

[10] Bruno Buchberger. “Some properties of Gröbner bases for polyno-
mial ideals.” In: ACM SIGSAM Bulletin 10 (1976), pp. 19–24.

[11] Whitfield Diffie and Martin Hellman. “New directions in cryptogra-
phy.” In: IEEE Transactions on Information Theory 22.6 (1976).

[12] Euclid. The Thirteen Books of the Elements, Vol. 2. Dover Publications,
1956.

[13] Euclid. The Thirteen Books of the Elements, Vol. 3. Dover Publications,
1956.

[14] F.A. Ficken. The Simplex Method of Linear Programming. Dover Books
on Mathematics, 2015. ISBN: 978-0486796857.

293

294 BIBLIOGRAPHY

[15] Johann Carl Friedrich Gauss. Disquisitiones Arithmeticæ.
Translated by Arthur A. Clarke. Original available online at
http://resolver.sub.uni-goettingen.de/purl?PPN235993352. Yale
University Press, 1965.

[16] Walter Gautschi. “Leonhard Euler: His Life, the Man,
and His Works.” In: SIAM Review (2008). URL: https :
//www.cs.purdue.edu/homes/wxg/Euler/EulerLect.pdf.

[17] W. M. Gentleman and S. C. Johnson. “The Evaluation of Determi-
nants by Expansion by Minors and the General Problem of Substitu-
tion.” In: Mathematics of Computation 28.126 (Apr. 1974), pp. 543–548.

[18] Sophie Germain. Recherches sur la théorie des surfaces élastiques. Avail-
able online from http://books.google.com. Courcier, 1821.

[19] Wolfgang Gröbner. “Über die Eliminationstheorie.” In: Monatshefte
für Mathematik 54 (1950), pp. 71–78.

[20] R.E. Hewitt and E. Hewitt. “The Gibbs-Wilbraham phenomenon:
An episode in fourier analysis.” In: Arch. Hist. Exact Sci. 21 (1979),
pp. 129–160.

[21] Peter Høeg. Smilla’s Sense of Snow. Delta; Reprint edition, 1995.
[22] Jean-Pierre Tignol. Galois’ Theory of Algebraic Equations. Singapore:

World Scientific, 2001.
[23] Carl Jacobi. “Suite des notices sur les fonctions elliptiques.” In: Jour-

nal für die reine und angewandte Mathematik 3 (1828), pp. 303–308.
[24] Shen Kangshen and John Crossley. The Nine Chapters on the Mathemat-

ical Art: Companion and Commentary. Oxford University Press, 2000.
ISBN: 978-0198539360.

[25] Joseph P.S. Kung. “Möbius inversion.” In: Encyclopedia of Mathematics,
(2001).

[26] Y. S. Kwoh et al. “A robot with improved absolute positioning accu-
racy for CT guided stereotactic brain surgery.” In: IEEE Trans. Biomed.
Engng. 35 (1988), pp. 153–161.

[27] Jussi Lehtonen. “The Lambert W function in ecological and
evolutionary models.” In: Methods in Ecology and Evolution 7 (2016),
pp. 1110–1118.

[28] P. H. Leslie. “The use of matrices in certain population mathematics.”
In: Biometrika 33.3 (1945), pp. 183–212.

[29] Claude Lobry and Tewfik Sari. “Migrations in the Rosenzweig-
MacArthur model and the “atto-fox” problem.” In: ARIMA Journa 20
(2015), pp. 95–125.

[30] Arnold N. Lowan. On the use of Chebyshev polynomials in numerical
analysis. University of Michigan Library, 1958.

[31] Ernst W. Mayr. “Some complexity results for polynomial ideals.” In:
Journal of Complexity 13 (1997), pp. 301–384.

[32] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Grav-
itation. Physics. W. H. Freeman, 1973.

[33] C. D. Olds. Continued Fractions. Random house, 1963.
[34] Alan V. Oppenheim, Ronald W. Schafer, and

John R. Buck. Discrete-time signal processing. Also available at

BIBLIOGRAPHY 295

https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf.
Upper Saddle River, N.J.: Prentice Hall., 1999. ISBN: 0-13-754920-2.

[35] Bernhard Riemann. “Über die Anzahl der Primzahlen unter einer
gegebenen Grösse.” In: Monatsberichte der Berliner Akademie (1859).

[36] Edward Rosen. Kepler’s Conversation with Galileo’s Sidereal messenger.
First Complete Translation, with an Introduction and notes. Johnson
Reprint Corp., 1965.

[37] M. Rosenzweig and R. MacArthur. “Graphical representation and
stability conditions of predator-prey interactions.” In: American Nat-
uralist 97.895 (1963).

[38] Walter Rudin. Real and Complex Analysis. MC GRAW HILL INDIA,
1987.

[39] H. E. Salzer and R. Zucker. “Table of zeros and weight factors of the
first fifteen Laguerre polynomials.” In: Bulletin of the American Math-
ematical Society 55.10 (1949), pp. 1004–1012.

[40] Justin R. Smith. Abstract Algebra. Five Dimensions Press, 2019. ISBN:
I978-1070799605.

[41] Justin R. Smith. Bloodline. Ebook. ASIN : B07BTDNTP5. Silver Leaf
Books, 2018.

[42] Justin R. Smith. Introduction to Algebra Geometry. Five Dimensions
Press, 2014.

[43] W. J. Stewart. An Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.

[44] Morris Tenenbaum and Harry Pollard. Ordinary Differential Equations.
Dover Publications, 1985. ISBN: 9780486649405.

[45] Darko Veberič. “Lambert W function for applications in physics.” In:
Computer Physics Communications 183.12 (2012), pp. 2622–2628.

[46] I. M. Vinogradov. Elements of Number Theory. Dover Publications,
2003. ISBN: 978-0-486-49530-9.

[47] Wolfgang Sartorius von Waltershausen. Gauss zum Gedächtnis.
Reprinted 2012. Edition am Gutenbergplatz Leipzig, 1856. ISBN:
9783937219578.

[48] Eric Weisstein. Elliptic Integral. From Mathworld
— A Wolfram Web Resource. URL: https :
//mathworld.wolfram.com/EllipticIntegral.html.

[49] David R. Wilkins. On the Number of Prime Numbers less
than a Given Quantity. English. Clay Mathematics Institute.
Dec. 1998. URL: https : / / www . claymath . org / wp -
content/uploads/2023/04/Wilkins-translation.pdf.

