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TOPOLOGICAL REALIZATIONS OF CHAIN COMPLEXES
II. THE RATIONAL CASE

JUSTIN R. SMITH

This paper continues the study of the realizability question for
chain complexes. We address the following question:

Given a group π and a Qπ-projective chain-complex
Γ, does there exist a topological space with fun-
damental group isomorphic to π whose equivariant
chain complex is TΊ

We essentially answer this question in the affirmative in an important
special case and develop a purely algebraic obstruction theory for the
problem in the general case.

Introduction. This question is of interest in connection with the
question of what homotopy types of manifolds exist. One can try
to construct a manifold by first realizing its chain-complex with the
coproduct that makes it into suitable Poincare duality complex—and
then try to use surgery theory to build the manifold.

We will call a CW-complex X 0-split if the canonical map X —•
K{π\(X)) splits up to a homotopy. Then the questions mentioned
above are resolved fairly completely for O-split spaces by developing a
theory of "minimal models" for such CW-complexes that generalizes
the theory developed by Sullivan in his "Infinitesimal computations
in topology"—see [18].

One of the main results of this paper is:

THEOREM (COROLLARY 1.6). Let π be any group and ( C θ Q , Δ )
be any (cocommutative coassociative) DGA-coalgebra with coproduct
Δ: C © Q —> (C 0 Q) ® (C θ Q), where C is a 2-connected free tyπ-chain
complex. Then there exists a 0-split CW complex X with fundamental
group π such that the chain-complex of the kernel of the canonical
map C(X) Θ Q - ^ Q * is chain-homotopy equivalent to C via a chain-
homotopy equivalence that carries the geometric coproduct to a map
homotopic to Δ.

REMARKS. 1. Note that this implies the solvability of the Steenrod
Problem for Q-modules. Here β* is a projective Qπ-resolution of Q.
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In [17] the author proved a stable version of this result. In 1981 Hans
Baues and Stephen Halperin proved the solvability of the Steenrod
Problem for modules of finite Q-rank (private communication to the
author).

2. In general there are many possible inequivalent topological real-
izations for C.

3. This result makes essential use of the fact that C is 0-sρlit and
rational. If we attempt to prove the result over Zπ rather than Qπ we
encounter counterexamples—see [4] and [15]. In the nonsplit rational
case there are also counterexamples—see §3 of the present paper.

4. Using the results of C. T. C. Wall in [19] it is possible to find a
topological realization for C whose underlying (CW) chain-complex
is isomorphic to C after rationalization.

We also show that:

THEOREM. Every 0-split CW complex has associated with it a pro-
jective DGA-coalgebra over Qπ called its 0-split Q-model. Two 0-split
CW-complexes are rationally homotopy equivalent if and only if their
fundamental groups are isomorphic and their ty-models are isomorphic
as DGA-coalgebras.

REMARKS. 1. See 2.14 for the definition of rational homotopy
equivalence used here. Essentially two CW-complexes are rationally
homotopy equivalent in this paper if their fundamental groups are
isomorphic and their universal covering spaces are equivariantly ra-
tionally homotopy equivalent (in the usual sense). See 2.12 and Ap-
pendix C for a proof that the Q-models faithfully represent the homo-
topy category of DGA-coalgebras.

We are using the term "minimal models" to stand for a faithful
algebraic representation of the rational homotopy category of 0-sρlit
CW-complexes. Rationally homotopy equivalent 0-sρlit spaces map
into isomorphic algebraic objects.

2. The approach used in the present paper is different from that of
Baues in [1] and Baues and Lemaire in [2]. Baues picked the chain-
algebra of the loop space of a CW complex as the fundamental invari-
ant. That invariant contains much of the same homotopy-theoretic
information about a space as the invariant studied here.

3. Our approach differs somewhat from that of Triantafillou and
Rothenberg (see [13]) in that our main invariant of a space is the DGA-
coalgebra rather than the DG-Lie algebra. Although Quillen proved
that the homotopy theory of DG-Lie algebras is equivalent to that of
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DG-coalgebras (and even in our context)—there doesn't appear to be
any simple way to get a theory of minimal models for DG-Lie algebras
over Qπ when π is infinite. When π infinite the contribution of homo-
logical algebra essentially disappears and Triantafillou and Rothenberg
were able to develop a theory of minimal models for DG-Lie algebras.

4. Our theory differs from that of Sullivan in that it uses the original
chain complex rather than the dual This means that our theory is a
kind of dual to that of Sullivan. In fact, in the simply-connected case
it is precisely that.

In the general case we define:
1. For any group π, a Q-model 93(π) (see 1.9);
2LJFor any Qπ-chain-complex, C, equipped with a chain-map c: C —•

K(π, 1), an associated complex G$ and chain-map c^\ G& —• 93(π) (see
1.15). Here K{π, 1) denotes the rational chain-complex of the univer-
sal covering space of a K(π, 1).

With these definitions in mind our main result is (1.19):

THEOREM. Let C be a tyπ-chain complex such that H0(C) = Q,
Hγ{C) = 0. Let C<&:C<B —• 93(π) ^ associated chain-complex and
map. Then C is topologically realizable if and only if there exists a
Q-model M and a DGA-coalgebra homomorphism f:M —> Af(93(π))
such that the following diagram commutes up to a chain-homotopy:

M - ^

I I
C<B - ^ ®(π)

In §3 of this paper we give an obstruction theory to this happening.
It is a purely algebraic version of the obstruction theory presented in
[17].

One result in this case is (Proposition 3.3):

THEOREM. Let π be a group of Q-homological dimension < 5 and
let C be any projective tyπ-chain complex. Then there exists at
most one obstruction to topologically realizing C : it is ι*(a ® v) e
H5{C;H2(C)®I2(π)), where

1. a G H3(π, H2(C)) is the first homological k-invariant;
2. i: C^ —• 93(π) is the projection;

3. υ: 93(π)2 —> h(π) vnaps elements to their homology classes. D



172 JUSTIN R. SMITH

In more generality:

THEOREM. If the ty-homological dimension ofπisk>2 there exist
at most k - 4 significant obstructions to topologically realizing a Qπ-
chain complex.

We also show that the following chain complex is not topologically
realizable: π = Z 5 and C = Q ®a Σ 2Q, where a e i/ 3(π,Q) is any
nontrivial class, and Q is a projective Qπ-resolution of Q.

Section 1 describes the connections with Quillen's theory in [11]
and develops the topological basis for Q-models.

Section 2 defines Q-models in the 0-split case and describes their
main properties.

Section 3 presents the theory of Q-models in the general case and
describes a purely algebraic obstruction theory for realizability of Qπ-
chain-complexes.

Appendix A shows that a certain equivalence of categories devel-
oped in § 1 extends to an equivalence of homotopy theories.

Appendix B develops some algebraic background material related
to twisted tensor products and DGA-coalgebras.

I am indebted to Sylvain Cappell and Andrew Ranicki for their
encouragement. I am also indebted to Drexel University for providing
me with a research grant and other support for this work.

1. The initial reduction. In this section we will apply the theory
developed by Quillen in [11] to reduce the topological problem of re-
alizing 0-split rational chain-complexes to a purely algebraic problem.

We begin with:

DEFINITION 1.1. 1. Let O-Split-π denote the category of 0-split CW-
complexes with fundamental group π, where the morphisms are maps
that induce an isomorphism of fundamental groups and commute with
splitting maps. A morphism will be called a weak equivalence if it
induces isomorphisms in homology of the universal covering spaces.

2. Let PointedFree-π denote the category of pointed simply-
connected CW complexes that are equipped with a π-action that is
free everywhere except for the basepoint. A morphism will be called
a weak equivalence if it induces isomorphisms in homology.

REMARKS. 1. Note that our notion of weak equivalence corresponds
to that of homotopy equivalence, due to the fact that the π-actions are
free.
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2. Let Ho(O-Split-π) and Ho(PointedFree-π) denote the correspond-
ing categories localized with respect to weak equivalences.

DEFINITION 1.2. Let the functors £:0-Sρlit-π —• PointedFree-π,
#: PointedFree-π —• O-Split-π be defined as follows:

If X e O-Split-π with splitting map s:K(π, 1) -> X then:

1. form the universal covering space X with map s:K(π, 1) —•
X—here the tildas denote universal covering spaces or induced
maps;

2. €(X) is the mapping cone of s.

If Y e PointedFree-π then

1. form the product Y x K(π, 1), and equip it with the diagonal
π-action; ^

2. define $(Y) to be the quotient Y x K(π, l)/π. D

PROPOSITION 1.3. The functors € and $ define equivalences of the
categories Ho(0-Split-π) and VLo(PointedFree-π).

Proof. We need only verify: a. that the functors preserve weak
equivalences; b. that £ & PointedFree-π —• PointedFree-π and #
€: O-Split-π —> O-Split-π induce the identity maps of localized cate-
gories (i.e. <t>$(Y) is weakly equivalent to Y and # €(X) is weakly
equivalent to X). But both statements are clear.

As in [11, p. 211] we get a sequence of categories:

&2-π—the category of 2-reduced simplicial sets equipped with a π-
action that is free except in dimensions 0 and 1 (each of which have
a single element)

(SGp-π)i—the category of reduced simplicial groups equipped with
a π-action that is free except at the identity element.

(SCHA-π)i—the category of reduced simplicial complete Hopf alge-
bras over Q equipped with a π-action that is free except in dimension
0.

(SLA-π)i—the category of reduced simplicial Lie algebras over Q
equipped with a π-action that is free except in dimension 0.

(DGL-π)i—the category of free reduced differential graded Lie al-
gebras over Qπ.1

^.e. the chain-modules are free Qπ-modules.
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(DGC-π)2—The category of 2-reduced free differential graded
(cocommutative, coassociative) coalgebras over Qπ. We will call a
DGA-coalgebra C 2-reduced if: Co = Q; Q = 0. The copy of Q
in dimension 0 will be called the fixed-point of C. Maps between
objects of (DGC-π)2 are required to preserve fixed points.

As in [11] we get a diagram of pairs of adjoint functors between
these categories:

II G Q
PointedFree-π ±? 6 2 τ± (SGp-π)i τ± (SCHA-π)i

£2Sing w g

(DGC-π)i § (DGL-π)! <±
& N

The functors defined by Quillen are natural with respect (ultimately)
to maps of pointed simply-connected spaces so they induce functors
between the categories defined in the present paper. As in [11] these
functors define equivalences between the categories localized with re-
spect to weak equivalences. Here we make use of the fact that we
define weak equivalence with respect to homology rather than homo-
topy modules. We get the following variation on Theorem I in [11].

THEOREM 1.4. The functors given above induce an equivalence of the
localized categories Ho(O-Split-π) and Ho((DGC-π)2).

REMARKS. 1. The proof is essentially the same as that of Theo-
rem I.

2. Equality of objects in the localized categories is defined in the
following way:

Two objects O\ and Oι in a category C are equal in
Ho(C) if and only if there exists a chain of weak equiva-
lences (in C) 0i <-• C\ - «-> Ci• - «-• 02- Here ^+ denotes
an arrow going in either direction but not necessarily
both directions. A morphism 0\ —* 02 in Ho(C) is a
morphism v\ —• v^ where V( = O\ in Ho(C), / = 1,2.

3. Ho((DGC-π)2) is the homotopy category of free 2-connected
cocommutative DGA-coalgebras over Qπ.

In other words:

COROLLARY 1.5 Two 0-split CW-complexes X and Y in
Ho(O-Split-π) are homotopy equivalent if and only if the commutative
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ΌGA-coalgebras W
represent equal objects in Ho((DGC-π)2).

COROLLARY 1.6 Let π be any group and (C Θ Q, Δ) be any (commu-
tative coassociative) DGA-coalgebra with coproduct Δ: C Θ Q —> (C Θ
Q ) ® ( C θ Q), where C is a 2-connected free tyπ-chain complex. Then
there exists a 0-split CW complex X with fundamental group π such that
the chain-complex of the kernel of the canonical map C(X) ® Q —> Q*
is chain-homotopy equivalent to C via a chain-homotopy equivalence
that carries the geometric coproduct to a map homotopίc to Δ.

REMARKS. 1. Here X represents the universal covering space of X,
equipped with a free π-action and the direct summand Q represents the
O-dimensional portion of the complex. The chain-complex C(Z)®Q is
a free Qπ-chain-complex and β* represents a free Qπ-resolution of Q.

2. The proof of this result follows from consideration of the effect
of £ and % on the chain-complex.

COROLLARY 1.7 If π is any group and C is any free 2-connected
Qπ-chain-complex then C is topologically realizable.

REMARK. 1. Simply equip C θ Q with the trivial coproduct structure
that maps c e C to 1 ® c + c ® 1.

2. Note that this implies the solvability of the Steenrod Problem
for Qπ-modules. In [17] the author proved a stable version of this
result. In 1981 Hans Baues and Stephen Halperin proved the solv-
ability of the Steenrod Problem for modules of finite Q-rank (private
communication to the author).

In [11] Quillen proved that this theory gave an equivalence of ho-
motopy theories between pointed 2-connected topological spaces and
(DGC)2 Here a homotopy theory is defined in the sense of [12]—a
closed model category localized with respect to weak equivalences. Fi-
brations of spaces corresponded (under the equivalence of homotopy
theories mentioned above) to fibrations in (DGQ2. These turned out
to be twisted tensor products equipped with the untwisted coproduct
structure where the fiber is the universal enveloping algebra of a DG
Lie algebra.

We prove a similar result.

THEOREM 1.8 The equivalence of the categories Ho(O-Split-π) and
Ho((DGC-π)2) induces an equivalence of homotopy theories.
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REMARKS. 1. See Appendix A for a proof. This statement only
becomes significant if we define fibrations and cofibrations in the two
categories:

(a) fibrations and cofibrations in O-Split-π are defined exactly as
equivariant fibrations and cofibrations in the category of sim-
plicial sets.

(b) a cofibration in (DGC-π)2 is defined to be an inclusion of
DGA-coalgebras that is an inclusion of a direct summand;

(c) a fibration in (DGC-π)2 is essentially a projection of a twisted
tensor product (up to a weak equivalence).

2. This implies that the equivalence of categories essentially maps
fibrations of spaces into twisted tensor products of DGA-coalgebras (up
to a homotopy equivalence). This fact is the essential ingredient used
in the construction of minimal models for objects in O-Split-π.

DEFINITION 1.9. Let K(π7ί) denote the universal cover of K(π, 1)
(regarded as a simplicial set)—this is equipped with a free π-action.
Let 2$(π) denote the result of collapsing the 1-skeleton of K(π, 1) and
let p(π): K(π, 1) —> <B(π) denote the collapsing map. Then 93(π) is an
object in PointedFree-π. D

REMARKS. Note that the homotopy type of 93(π) in PointedFree-π
is uniquely defined and that 93(π) is functorial in π (at least if we always
use the Eilenberg-Mac Lane description of K(π, 1) given in [6]).

DEFINITION 1.10. Let Map2-π denote the category of maps / : X —>
K{π, 1) with the following properties:

1. X is a simplicial set;

2. the map / induces an isomorphism of l-skeleta and of funda-
mental groups. Morphisms are commutative triangles:

Xx —> X2

f\ /h •
K{πΛ)

REMARKS. Given any simplicial set Z with π\(Z) = π, it is well
known that Z is weakly equivalent to an object of Map2-π. For in-
stance construct the semi-simplicial minimal model for Z as in [5].

DEFINITION 1.11. Let PointedMap-π denote the category of
maps f:X —• 23(π), where X e PointedFree-π and a morphism
{f\'-X\ -> ®(*0) -> (foXi -+ ®(π)) is defined to be a commutative
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triangle
Xx —> X2

f\ /h •
<B(π)

DEFINITION 1.12. We define functors #:Map2-π -» PointedMap-π
and 3: PointedMap-π —• Map2-π as follows:

(a) Given an object c:X —• Λ (̂π, 1) of Map2-π let c:X —> jKΓ(π, 1)
be the induced map of universal covering spaces. Now collapse
the 1-skeleta of X and J£(π, 1) to get a map to PointedFree-π
cΊX/l-skeleton-* 93(π). This map is β(JΓ). This construction
is clearly functorial and preserves weak equivalences.

(b) Given an object a = (f:X —• 33(π)) of PointedMap-π define
Z(a) to be P(X)/π, where P(Z) is the equivariant fiberedprod-
uct over the diagram

^ 1/
K{πΛ) -+

where the bottom row is the canonical map K(n, 1) —
The total space of the fibered product is equipped with a free
π-action. D

PROPOSITION 1.13. The functor ft induces an equivalence of cate-
gories ft: Map2-π —> PointedMap-π.

Proof Consider 3ofi(X), where X e Map2-π. The universal prop-
erty of the cartesian square that results from forming a fibered product
implies the existence of a natural map X —> 3 fi(X).

Claim. This map is an isomorphism of simplicial sets.

Proof of claim. This follows from:

(a) Since K(π, 1) —• 5S(π) is an isomorphism above dimension 1,
X -> 3of)(X) will be an isomorphism above dimension 1;

(b) Since c:X —• K(π, 1) is an isomorphism below dimension 2 (by
statement 2 in 1.10), X —• Z°?)(X) will be an isomorphism below
dimension 2.

A similar argument implies that ft o $ is an isomorphism. The con-
clusion follows. D
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COROLLARY 1.14. Given an object Xy o/Map2-π it is possible to
associate a Q-model that is a homomorphism of DGA-coalgebras
M(f)(X)) —• Λ/(95(π)), where M(2J(π)) depends only upon the group
π. Two such objects are homotopy equivalent if and only if there exists
a commutative diagram

M{S){XX)) -U

\

where the map i is an isomorphism of DGA-coalgebras. u

We can also apply this result to the question of readability of Qπ-
chain-complexes.

DEFINITION 1.15. Let C be a projective_Qπ-chain complex such that
H0(C) = Q, Hι(C) = 0 and let c:C -> K(π, 1) be the canonical map
that induces an isomorphism of homology in dimension 0. Define C%
as follows:

(a) Form the algebraic mapping cone 2l(c);
(b) form the map /: K(π, 1) —• 2l(c) sending K(π, 1) to the imbedded

copy of itself via the identity map;
(c) homotope / to a map, /', that sends the 1-skeleton of K(π, 1) to

0—this is possible because c is a chain-homotopy equivalence below
dimension 2 so that 2l(c) is contractible below dimension 2;

(d) GB is defined to be Σ"1^/')/(I-skeleton of K(π, 1)) ΘQ. α

REMARKS. By abuse of notation, we have identified K(π, 1) with its
chain-complex. The copy of Q that is added w (C©)o

2. Essentially, X)"12l(/') turns out to be chain-homotopy equivalent
to C but it has an imbedded copy of the 1-skeleton of K(π, 1) (this is
guaranteed by the fact that we modified / by a homotopy giving a map
that sends the 1-skeleton of K(π, 1) to 0).

3. Note that, although it appears that arbitrary choices were made
in the selection of /', Gβ is uniquely defined up to an isomorphism
of chain-complexes. This is due to the well-known fact that varying
a map by a chain-homotopy alters the algebraic mapping cone by an
isomorphism. In fact two different choices give rise to equivalent ob-
jects in the category of maps of chain-complexes to the chain-complex
of*B(τr).

PROPOSITION 1.16. If the chain-complex of a simplicial set X is C,
then the map of complexes induced byfi(X) is equivalent to
in the category of maps of chain-complexes to that of*B(π).
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Proof. We start with the following diagram (which commutes up to
a homotopy):

C(X) —> C

K{π, 1)

where C(X) is the chain-complex of the universal covering space of X,
the horizontal map is a chain-homotopy equivalence and the maps c,
induce homology isomorphisms in dimension 0. We get the following
diagram of algebraic mapping cones:

K{πΛ)

where the /-maps are the inclusions, and the horizontal map is, again,
a chain-homotopy equivalence. This gives rise to the following chain-
homotopy-commutative diagram:

Here v is a chain-homotopy equivalence, p is the standard projection,
and h is the projection to C(X), modified to send the 1-skeleton of
K(π, 1) to that of C{X). After factoring out the 1-skeleton of all
chain-complexes, we end up with chain-homotopy equivalences in the
vertical and horizontal maps. D

PROPOSITION 1.17. Let f:Ci -• K{π,\), i = 1,2, be two chain-
maps of Qπ-projective chain-complexes and suppose the f • : 1. induce
isomorphisms in dimensions 0 and 1; and, 2. induce isomorphisms in
homology in dimension 1. Suppose, in addition, we get the following
commutative diagram {up to a chain-homotopy):

(COfB

1.18: homotopy equivalence

(C2)»
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Then there exists a map g: C\ —• C2 that makes the following dia-
gram commute up to a chain-homotopy:

Cx

V, ,
4 K{π, 1)

/h

c2
REMARKS. Consider the isomorphism j:K(π, 1)2 -*• 2*(π)2 Given

the induced map of chain-complexes, / : C —• 93(π), of H(X) we can
reconstruct the chain-complex of X as follows:

C{X)i = d, for / > 1; C{X)i = ΈiπΛ)^ for i < 1.

The conclusion follows.

THEOREM 1.19. Let C be a tyπ-chain complex such that H0(C) — Q,
H\(C) = 0. Letc<$: G$ -> 95(π) the associated chain-complex and map.
Then C is topologically realizable if and only if there exists a ty-model
M and a DGA-coalgebra homomorphism f:M —• Af(Q3(π)) 5wc/z ^ α ί
the following diagram commutes up to a chain-homotopy:

M -£+ Af(®(π))

I I
C s ^ ®(π)

REMARKS. The vertical maps are Qπ-chain homotopy equivalences.

Proof. Necessity is clear. Sufficiency follows from the fact that:
(a) M is the Q-model of some topological space Y with a map Y ->

(b) we form Jf = -J(Ĵ  —> 93(7r)). This is a space with the property
that C(ή(X)) « C(^)® -> ®(π) « C<B -^ ®(π) (by 1.16) (where
C(*) stands for chain-complex and « stands for "chain-homotopy-
equivalent to"). Proposition 1.17 then implies that C{X) is chain-
homotopy equivalent to C.

Let /2(π) = /f2p8(π)) = kernel55(π)2 -^ ®(π)i. The map C» ->
95(TΓ) induces a map H2(C<B) —»• /2(π) and implies the existence of a
module extension Hι{C) —• Hi{C^) —> ^ ( π ) , classified by an element
of Extqπ(/2(π), H2(C)) = H3(π, H2{C)). This extension characterizes
the contribution of the first homological ^-invariant of C and it turns
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out that:

PROPOSITION 1.20. The Qπ-chain complex C is topologically realiz-
able if and only if there exists a map of Q-models f: Y —• M (95(π)) such
that: 1. the underlying chain-complex of Y is chain-homotopy equiva-
lent to C, and; 2. the map H2(Y) —• h(π) induced by f defines the
same extension as that ofC.

Proof. Clearly the topological realizability of C implies the hypothe-
ses. On the other hand, if the hypotheses are satisfied we can also
satisfy the hypotheses of 1.19 since 93(π) is essentially a suspension of
a resolution and chain-maps to resolutions are characterized (up to a
chain-homotopy) by the induced maps in homology. D

2. Q-models—the split case. This section will develop Q-models
algebraically and show that the homotopy theory of DGA-coalgebras
produced by Quillen's theory can be represented by Q-models. We
will use the results of Appendix B extensively.

DEFINITION 2.1. Let M be an abelian group, and let n be an integer
> 1. Then:

(a) if n is even U(M, n) is defined to be the divided power algebra
defined in [5] as follows:

(i) U(M, n)k vanishes if k is not a multiple of n\
(ii) U(M,n)nt is generated by symbols γt{m) for all m e M and

these symbols satisfy the relations: yo(m) = 1 € U(M,n)o — Z;
γa(m) - γβ(m) = (a + β)\/a\βlγa+β(m)9 for all m e M and α, β > 0;
γt(m{ + m2) = Σ a + ^ = ί ^ ( ^ i ) 7βi/n2)\ 7t{rm) = rιyt{rm\ for all
meM and r el.

(b) if n is odd U(M, n) is defined to be the exterior algebra on M
concentrated in dimensions that are multiples of n. α

REMARKS. 1. Note that if n is even U(M, ή)2n — Γ(M), the White-
head "universal quadratic" functor.

2. Note that the relations above are natural in the sense that, if M
is a Qπ-module, then U(M, n) is equipped with a natural Qπ-model
structure, and the multiplication respects this structure.

3. U{M, n) is also equipped with a commutative coproduct operation
—i.e. a map Δ: U(M, ή) -> U(M, n) ® U(M, n) defined by Δ(y,(ra)) =

Σa+β=t y*(m) e v e n

Δ(mi Λ Λ mt) = (1 ® m\ + m\ ® 1) Λ Λ (1 ® mt + mt ® 1),
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where (a ® b) Λ (c ® d) is defined to be equal to

(_l)<um(*).dm(c)(a Λ C) ® (fe Λ d),

if n is odd. With this coproduct it becomes a DGA-Hopf algebra.

PROPOSITION 2.2. Let (C,Δ) be a DGA-coalgebra whose lowest-
dimensional {above dimension 0) nonvanishing homology module is
M in dimension n > 1. Then there exists a homomorphism ofDGA-
coalgebras f:C —• il(M,«, Q) inducing an isomorphism of homology
in dimension n.

Proof. Let g: C —> ΣwΛf* be a chain-map inducing an isomorphism
of homology in dimension n—g exists because its target is a reso-
lution. Let Δ' = Δ - /, where / is the trivial coproduct sending
X 6 C t o 1®JC + ^ ® 1 . Iff/is the augmentation of C then2 / =
^+£+(<?®<?)°Δ'+(£®£®g)o(l(g>Δ') Δ'+ is a DGA-coalgebra homo-
morphism from C to the symmetric algebra S(Σn(M*) = ίl(Mf n,Q)
with the required properties (see B.8 in Appendix B). D

PROPOSITION 2.3. Let C be a commutative DGA-coalgebra A a com-
mutative DGA-algebra and let a: C —• ΣA be a chain-map. Let t(a!)\ C
-+ Abe defined by t(a')(x) = (-l)άimW-ιa(x). Then t(a'):C -> A
defines a twisting cochain. π

REMARK. See B.7 in Appendix B for a proof.

DEFINITION 2.4. Let M be a Qπ-module and let Af* be the standard
resolution of M defined in B.I. Then ίi(M,n,Q) is defined to be
lim F/, where F/ is a direct system constructed as follows:

1. Vjj=iί(Mj,n + j);
2. Vj,k = Vj,k+\ ®<**+1 U(Mk>n + k)> where 7 > k + 1 and α, + i is the

twisting cochain defined by the map 9/+i <g> 1: Q ί +i ® Λf —• Qt® M.
3. F, = ViΛ. Ώ

REMARKS. 1. ίi(Af,«, Q) is just an iterated twisted tensor product
of U(Mi, n + /)'s that reflect the structure of the standard resolution
of M. The only reason that we use a direct limit is that the standard
resolution of M may be infinite dimensional.

2Compare this with Brown's definition of the classifying map of a twisted tensor product at
the end of [3J.
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2. il(Λf, n, β ) supports the untwisted product and coproduct struc-
tures, by B. 11 and B. 10 in Appendix B. Note that ίi(M, n, β ) is canon-
ically isomorphic to the symmetric (Hopf) algebra S(ΣnM*), by B.9 in
Appendix B.

3. ίl(M, n,Q) is essentially a model for a K(M, n) in the homotopy
category (DGC-π)2 It can also be regarded as a dual to a simple
polynomial algebra (in analogy with Sullivan's "Infinitesimal Compu-
tations in Topology"), in which case the twisted tensor products are
duals of Hirsch Extensions.

DEFINITION 2.5. A Q-model, T, is defined to be a sequence {Tn} of
DGA-coalgebras constructed as follows:

1. TO = TX=Q;
2. for all / > 1 Γ/+1 = Tt ®t{f) ίl(Λf/+1, / + 1, β) , where / is some

chain-map / : Γ/ —> Σ/+1(A//+1)*. See the discussion preceding B.I3 in
Appendix B. B.I5 implies that Ti+\ is really determined (as a DGA-
coalgebra) by the class of t(f) € HM{Tit Mi+Ϊ).

The sequence of modules {Mi} will be called the homotopy modules
of the Q-model and the twisting cocycles used to form the twisted
tensor products above, will be called its k-invariants.

3. The inverse limit of the Tt is called the total space of the Q-
model T. D

REMARKS. See 2.3 for a definition of £(*). Note that each of the
twisted tensor products will support the untwisted coproduct structure—
see B.10 in Appendix B. We use this coproduct structure in build-
ing the higher stages of the Q-model (since they are twisted tensor
products—which are defined with respect to some coproduct).

DEFINITION 2.6. Let C be a commutative DGA-coalgebra. Then
the map m:C -• C ®C that sends aeC to l<g>α + α<g)leC<g)Cis
a chain-map. Define P{C)9 the primitive subcomplex of C, to be the
kernel of the chain-map Δ - m:C —• C ® C.

REMARKS. Let a:ίl(Mf n, Q) —• ΣU(M,« - 1, Q) be the chain-map
that is the identity map on P(ίl(M, n,Q)) = ΣnM* (except that it
lowers dimension by 1) and vanishes on all elements of degree > n.
Then t(a):ίί(M, n, Q) —• il(M, n - 1, Q) is a twisting cochain with the
property that ίl(M, n,Q) ®^α) H(Λf, w - 1, Q) is acyclic. This follows
from B.9 in Appendix B, which implies that

il(M, Λ, β ) ® ί ( α ) U(M, /ι - 1, β) = S(ΣnM* ®a> Σn~ιM*),

where α':Σ"Λf*-+Σ
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PROPOSITION 2.7. Let (C,Δ) be a DGA-coalgebra. Then there exists
a q-model T such that (C,Δ) = Γ, as objects o/Ho((DGC-π)2).

REMARKS. Recall the definition of equality of objects in a localized
category in Remark 2 following 1.4.

Proof. There are several ways to prove this result. We can use the
equivalence of homotopy theories in 1.8 and the existence and unique-
ness of Postnikov Towers in usual homotopy theory, for instance. In
this case the fibrations in the Postnikov Tower map into twisted tensor
products of the ίί(M, n, Q). We will give a purely algebraic proof using
2.2. We use induction on the stages of the construction of a Q-model
for C. We will show that there exists a sequence of DGA-coalgebras
Fi9 i > 0, with Fo = C, maps gt: Ft -> F/_i such that:

1. every gι is a DGA-coalgebra homomorphism and a homology
equivalence;

2. there exists an /-connected homomorphism of DGA-coalgebras
hi: Ft —• Γ/, where Γz is the /th stage of a Q-model.

Assume that we are given hi-\:Fi-\ —> 7/_i. We will construct
the next stage of T and F/. Let ΩΓ/_i denote "Quillen's cobar con-
struction of Γ ^ " — t h i s is defined on p. 290 of [11]. Recall that this
is the universal enveloping algebra of a DG-Lie algebra and it has
the property that Γz_i <g>5 ΩΓ/_i (untwisted coproduct structure) is
acyclic in positive dimensions, where s: 7/_i —• Ω ^ . j is Quillen's Uni-
versal Twisting function. We form the pullback P^\ = F^x ®^-joj
ΩΓ/_ i. Now JPZ_ i is at least /-connected. Consider the twisting cochain
y: Γ/_i -* P/_i—it is essentially identical to s: 7}_i —> Ω7}_i, i.e. its
image lies entirely in 1 (8) Ω7/_i. Let f/i and r\2 denote the augmen-
tations of 7/_i and Ω7) _i, respectively. It is not hard to see that
r\\®\®r\i\ 7/-i ®^ Pz_i —• JF/-i is a homology equivalence—this map
is gi and T^x ®y P^{ is Ft. Let z/rP/.i -* il(M/, /, β ) be a DGA-
coalgebra homomorphism inducing an isomorphism in homology in
dimension /—it exists by 2.2. The composite z\oy\ T^\ -> ii(Mif i, Q)
will also be a twisting cochain (by B.7 in Appendix B) and there will
exist a DGA-coalgebra homomorphism Λ/: i7/-! ®y ii{Mif i, Q) = Ft -•
Fi-\ ®ztoy tt(Mi, i, Q), which will also be /-connected. This completes
the proof of the inductive step and the result. D

PROPOSITION 2.8. Let T be a Q-model. The homology modules of
P(T) are the homotopy-modules ofT.
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Proof. This follows from the fact that P(ίί(M, n, Q)) = ΣnM* and
the fact that T has the untwisted coproduct structure.

PROPOSITION 2.9. Let f: T\ ->T2be a DGA-coalgebra isomorphism
of the total spaces of two Q-models. Then f is of the form S(f\P(Tχ)).

Proof. Let T be a Q-model. Then T can be written as a tensor
product of the form

oo oo

® ® U(Mi Θ Pitj, i) = <g) U (0Λ// ® Λj, i)
ι = l i = l

(this doesn't respect the differential).

Claim. The map / respects this tensor product decomposition.

The conclusion follows from the fact that elements of the ith factor
of T can be characterized as follows: An ̂ -dimensional element, e, is
in Tif if and only if all factors in the terms of An(e) are of dimension
ki (for some value of k) or dimension 0. This property must be
preserved under any isomorphism of DGA-coalgebras. D

REMARKS. 1. We are not claiming that any map of primitive sub-
complexes of Q-models induces a map of the Q-models.

2. Note that this implies that if we equip Q-models with the tensor
product algebra structure (this doesn't necessarily make them DGA-
algebras) this algebra structure will be preserved by any DGA-coalgebra
isomorphism.

3. If the map / : T\ —• T2 is only a DGA-coalgebra homomorphism
then an element x of T\ of dimension i can map to elements of T2 of
dimension ki. Consider a map tt(M, 2,Q) -> il(Γ(Λ/), 4, Q) inducing
an isomorphism of homology in dimension 4.3

THEOREM 2.10. Let f\T\ -* T2 be an DGA-coalgebra homomor-
phism of the total spaces of two Q-models. Then there exist isomor-
phisms of Q-models J^: Tt —> 7}, / = 1,2, and a DGA-coalgebra homo-
morphism / : T\ —> T2 such that the following diagram commutes'.

τ{ X τ2

3The existence of such a map is guaranteed by B.I9.
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The map f has the following properties:
l if' Pij- Ti —• (Tj)j is the projection to the jth stage the following

diagram commutes:

Ά M τ2

Plj[ ΪP2.J

REMARKS. 1. The map S(f*_hl ® 1) is the map induced by f\P(T\).

2. The map / will be called the uniformίzatίon of / .
3. See Appendix C for a proof.

COROLLARY 2.11. Let f: T\ —• T2 be a DGA-coalgebra homomor-
phism of the total spaces of two ^-models that induces isomorphisms
in homology. Then the uniformization, f, off is an isomorphism of
DGA-coalgebras.

REMARKS. This follows from the fact that the maps S(f*+ι ® 1)
will all be isomorphisms and the term Ξy+1Π* will look like a lower
triangular matrix, and so, will be an isomorphism.

COROLLARY 2.12. Two Q-models are equal as objects of
Ho((DGC-π)2) if and only if they are isomorphic as DGA-coalgebras.

A topological realization of a Q-model, T, is defined to be a topo-
logical space X with a chain-homotopy equivalence A/: C{X{) —• 7}
for all /, where X[ is the total space of the zth stage of a Postnikov
tower for X. In addition, we assume that for all / pt o hi = λ, _i oq t _ u

where pf. 7} —• Γ/_1? qt: Xt —• Xt_i are the projections and 7//(St(^/)) =

PROPOSITION 2.13. Let T be a ty-model. Then T has a topological
realization.

Proof. This follows from the basic result 1.4. Simply construct a
simplicial set, X, realizing the underlying DGA-coalgebra of the total
space of T. This construction can be carried out in a step-by-step
fashion, building a Postnikov Tower for X using the equivalence of



CHAIN COMPLEXES 187

homotopy theories in 1.8 and B. 18. The equivalence of homotopy the-
ories in 1.8 implies that the fibrations in the Postnikov tower trans-
late into twisted tensor products in Ho((DGC-π)2). Theorem B.I8
then implies that the "Eilenberg-MacLane" spaces, correspond to the

,Q). D

DEFINITION 2.14. Let f:X{ —• X2 be a map between two O-split
CW-complexes. Then / is a rational homotopy equivalence if:

1. / induces an isomorphism of fundamental groups;
2. / induces isomorphisms π/(/) ® Q: Ki(X\)<8>Q -> iti(Xi) ® Q, for

i > 2. D

PROPOSITION 2.15. Let T(Xχ), T{X2) be Q-models of two O-split
CW-complexes, Then X\ and X2 are rationally homotopy equivalent if
and only ifT(X\), T(X2) are isomorphic as DGA-coalgebras.

Proof. Clearly, if the spaces are rationally homotopy equivalent the
Q-models will be isomorphic—by 2.10. Conversely, if the Q-models
are isomorphic we can build Postnikov towers for the two spaces that
are rationally homotopy equivalent. D

We will now show how some well-known topological invariants of a
space can be computed from its Q-model. Note that a Q-model comes
equipped with a product structure as well as a coproduct structure—
this results from the twisted tensor product decomposition of the Q-
model. We just equip the twisted tensor product with the tensor prod-
uct multiplication (which exists since each factor is a DGA-Hopf al-
gebra). The Q-model will generally not be a DGA-algebra with respect
to this product structure.

PROPOSITION 2.16. Let T be a Q-model and let

P2(T) = A~ι(P(T) ® P(T)).

Then the product operation described above defines a map μ:P(T) ®
P(T) —• P2(T). This map is natural with respect to DGA-coalgebra
homomorphisms ofT.

Proof. This follows from the fact that we can express //asΔ '
where y:C ®C —• C® C is the symmetrization map that sends x <g> y
to ( x ® y + (-l) d i m W d i m Wj;®x)/2. D

Note that the natural product operation won't preserve the differen-
tial of the Q-model. The degree to which it fails to do so turns out to
be significant.
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PROPOSITION 2.17. Let T be a q-model. Ifx, y eP(T) let [x, y] =
(dμ)(x®y) = doμ(χ®y)-μ(d{x®y)). Then [, ] defines the structure
of a DG-Lie algebra on Σ~ιP(T).

REMARKS. 1. We have to desuspend P(T) so that the dimensions
of products will be right.

2. Since the homology modules of P{T) coincide with the homo-
topy modules of Γ, this Lie algebra operation defines a product on
homotopy modules.

Proof. We first have to verify that [x,y]e P(T). To see this note
that the product operation μ preserves the untwisted tensor product
differential. It follows that in forming dμ, the only terms that are
significant are those involving twisting cochains. But the images of
twisting cochains used to form T from ίl(M, n,QYsall lie in the prim-
itive subcomplexes of higher terms. The other properties of a DGA-
Lie algebra (for instance the Jacobi identity) follow easily from the
definition. D

PROPOSITION 2.18. The product operation induced on homotopy
modules by the Lie bracket operation onΣ~ιP(T) defined above, coin-
cides with the Whitehead product

Proof. Recall the definition of the Whitehead product: Given ho-
motopy classes x e π^xy.S1 -> X, y e %j{X)\Sj —• X, represented
by maps fx: Sι —• X and fy: Sj —• X the Whitehead product is defined
to be the image of a suitable generator of ni^J-i(Si V SJ) under the
map / x V fy\ Sι V Sj —• X. The generator in question is the one that
can be used to attach a cell to SιvSj to form Sι xSj. The conclusion
now follows from the naturality of the Lie bracket operation we have
defined and direct computation, using a Q-model for Sι x SJ. Π

These results give some insight into the meaning of Whitehead prod-
ucts. The structure constants of the Lie algebra structure we have de-
fined are determined by some of the twisting cochains used to form a
Q-model (see the proof of 2.17). Roughly speaking, Whitehead prod-
ucts measure the quadratic structure of the Q-model and nothing more.
Quillen's paper [11] defines a DG-Lie algebra that is similar to ours4,
and proves that Whitehead products are determined by this Lie algebra
structure and it is tempting to compare his construction with ours. It

4This is the functor Jz^(C)—Quillen's Lie-algebra version of the cobar-construction.
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turns out that the two constructions are not equivalent—and Quillen's
contains more information than ours. The underlying chain-complex
of the DG-Lie algebra Σ~ιP(T) turns out to be chain-homotopy equiv-
alent to the underlying chain-complex of the DG-Lie algebra defined
by Quillen but the Lie algebra structure is not quite the same (although
they both induce the same Lie algebra structure on homology). The
Lie algebra defined by Quillen determines the original DGA-coalgebra
(up to a homotopy equivalence), whereas Σ~ιP(T) can be shown not
to do so. Essentially, Quillen's Lie algebra has an underlying chain
complex that is an extension of ours by an acyclic complex—and the
Lie algebra structure of the result contains the quadratic as well as the
higher-degree information about a Q-model.

3. The general case. In this section we will develop a theory of
Q-models for non-split spaces using 1.10 through 1.20. We will first
present the general obstruction theory and then apply it to a specific
class of chain-complexes. Let C be a Qπ-chain complex such that
HQ(C) = Q, H\{C) — 0. Then C comes_equipped with a unique
chain-homotopy class of chain maps C —• K(π, 1). Let g: G& —> ®(π)
the associated chain-complex and map—see 1.15.

Consequently, we will assume given a chain-complex C© with a
homomorphism /://2(CΛB) —> h(π)-

Claim. It suffices to build a Q-model M that is a twisted tensor
product over 93(π) such that the underlying chain-complex of M is
chain-homotopy equivalent to GB via a map h:G&-+ M such that the
induced map p* o h*: Hι(C<&) -> hi*) coincides with / .

This follows from an argument like that used in the proof of 2.7—
essentially we have to show that if there exists a map of DGA-co-
algebras A -» B satisfying the hypotheses of 1.19 then there exists
(up to equivalence in the localized category Ho(DGC)) a map of Q-
models with this property, and that that map may be assumed to be
the projection of a twisted tensor product.

We will build a Q-model for GB—its A:th stage will be called Yk.
We begin with Yo = Y2 = 93(π) and g2 = identity map: Y -+ 93(π).
Let (Cy denote the /-skeleton of C and let h2: ( G B ) 2 -> C(Y2) be the
map induced by f. In general h^\ (C<s)k —> C(Yk) is a chain-map such
that 2l(λfc) is acyclic in dimensions < k + 1 and Yk is a twisted tensor
product over Yk-\ (which makes all of the Yk twisted tensor products
over 95(π)). The construction of Y proceeds in steps Ak and Bk, like
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the main construction in [17]:

Step Ak. Extend hh to ( G B ) * + 1 forming hk+v Strictly speaking this
is not an extension since hk may be modified in dimension k in the
process. We require that h'k+χ\(C^)k~x = hk\(C^)k-{.

Step Bk. Form a twisted tensor product (by a ίl(M, k - 1), Q)) over
Yk in such a way that Hk($ί(h'k+ι)) is killed—the result is Yk+\- Now
lift A£+1 to this twisted tensor product in a way that preserves the
commutativity of the diagram above (up to a chain-homotopy)—this
lift is

Claim. Step Bk can always be carried out.

This follows by essentially the same argument that is used in [17].
If Step Ak can be carried out 2l(A^+1) is acyclic below dimension k of
the evaluation map

is an isomorphism. This implies that there exists an element a e
Hk(Yk,Hk(<&(h'k+χ))) such that the homomorphism Hk{Yk) ->
Hk(^(h'k+X)) induced by evaluation coincides with that induced by
the inclusion C(Yk) -> &(A£+1). Choose a chain-map c:C(Yk) —•
ΣU(δl(A^+1),fc, Q) that induces an isomorphism in homology in di-
mension k + 1. Proposition 2.3 implies that we can convert c into a
twisting cochain, cf. Now we form the twisted tensor product Yk+\
via c'. The arguments in 2.4 and 2.5 of [17] then imply:

A. There exists a unique chain-homotopy class of lifts of h'k+ι to
C(Yk+χ) making the diagram above commute;

B. That lift, hk+u has the property that i//((2t(A^+1)) = 0 for

It follows that the only significant obstruction we will encounter
involves carrying out Step Ak. The obstructions to doing this can be
characterized in terms of elementary homological algebra, as was done
in [17].

DEFINITION 3.1. Let hk, (Gβ)^4"1 be as in step k described above.
Define a class (which will be called the kth obstruction to finding a
q-modelfor C) ck e Hk+l(C^,Hk(Qi(gk))) as follows:

(a) Note that, since hk is a chain map, the cycle submodule of
(G&)k is mapped into the cycle submodule of (W(gk))k s o that
we get a map from the cycle submodule of {G%)k to Hk(^ί(gk)).
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(b) Consider the composite (C<s)k+Ϊ —• (C©)^ -> Hk(%{gk)), where
the map on the left is the boundary map of T and that on the
right is induced by hk. This composite defines a cocycle that
gives the class ck. D

In the remainder of this section we will apply this obstruction theory
to some problems. The first step is the computation of a Q-model
for 95(π). I feel that this may be a difficult problem in general but
something can be said in the case where the homological dimension of
93(π) is limited (note that this is essentially the same as the homological
dimension of the group π).

PROPOSITION 3.2. If the homological dimension of the group π is < 5
then a ty-modelfor 53(π) is determined by the class of

defined by the induced coproduct, Δ, of$$(π).

REMARKS. 1. The coproduct, Δ, is derived from the geometric
coproduct ofK(π,l).

2. Here 72(π) is H2(
ςB(π)) = kernel ®(π)2 -^ ®(π)i The class of

ExtQπ(/2(π), h(π) ® ̂ (π)) i n quesiton is that induced by Δ:*8(π)4 —•
®(π)2 ® 53(π)2—it is well known that the chain-homotopy class of the
chain-map Δ is characterized by this element of the Ext-group.

Proof. Consider the steps involved in building a Q-model for 2$(π).
We will clearly have to begin with a ίl(/2(π), 2, Q). The next stage
requires a factor of il(Γ(/2(π)), 3,β) to kill off the homology of
il(/2(π), 2, Q) in dimension 4. Here Γ(/2(π)) is the Whitehead quadra-
tic functor of /2(π)—since we are working over Q it is isomorphic to
72(π) ® 72(7r). In order to see how to select the class of the twisting
cocycle used to form this stage note that

// 4 (U(/ 2 (π),2,β),/ 2 (π)Θ/ 2 (π))

= Ext2

qπ(I2(π),I2(π)®I2(π))

Θ HomZ π(/ 2(π) Θ / 2(π), I2(π) ® /2(π)).

Since we want to kill off the homology of il(/2(π),2, Q) in dimen-
sion 4 we will clearly want to select a class whose HomZ 7 r(/2(π) ®
72(π),/2(π) ® 72(π))-factor is an isomorphism of /2(π) ® / 2(π). We
also want the chain-homotopy class of the coproduct of the Q-model
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to agree with that of 95(π). Let P c ίl(J2(π), 2, Q) be a suspended pro-
jective resolution of / 2(π). It is a direct summand. Let α:<B(π) —• P
be a chain-homotopy equivalence—the chain-homotopy class of a
is unique—and let β:P —• 93(π) be a chain-homotopy inverse. Let
c GExtQ7r(/2(π),/2(π)®/2(π)) denote the class of Δ:Q5(τr)4 ->®(π) 2®
®(π)2.

Claim. The ExtQπ(/2(π), /2(π)Θ/2(π))-factor of the twisting cochain
must agree with (a ® a)*cβ*. Note that the following diagram

commutes in dimension 4—here Z> is the coproduct of U(/2(π), 2, Q).
The vertical map on the left side will only be a chain-map (at least up
to dimension 5) into a twisted tensor product if the twisting cochain
is essentially c - β. This implies the claim.

The remainder of the result follows from the fact that π is of homo-
logical dimension < 5. This implies that varying the twisting cochains
used to build the Q-model for 95(π) in higher dimensions (and killing
off the homology above dimension 2) will only alter the resulting Q-
model by an isomorphism of DGA-coalgebras—see B. 15 in Appen-
dix B. D

PROPOSITION 3.3. Let π be a group of Q-homological dimension <
5 and let C be any projective tyπ-chain complex. Then there exists
at most one obstruction to topologically realizing C: it is ι*(a®v) e
H5(C;H2(C)®I2(π)), where

1. a G // 3 (π, Hι{C)) is the first homological k-invariant;

2. i: GB —• 23(π) is the projection;

3. v:Q5(π)2 —• h{π) maps elements to their homology classes.

REMARKS. 1. The last statement uses the fact that 23(π)5 = 53(π)3 ®
Q5(π)2—at least for a Q-model for 33(π). By abuse of notation we are
using 95(π) to denote a Q-model for 33(π).

2. a ® v denotes the external product of cohomology classes.

Proof. We will build a candidate for a Q-model for Gβ. Let C+
denote a desuspension of the algebraic mapping cone of C —> K(π, 1).
Then C is chain-homotopy equivalent to a twisted direct sum
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K(π, 1) Θα C+ and GB is chain-homotopy equivalent to the corre-
sponding twisted direct sum 93(π) θ α C+—see B.4 and 1.15. Our can-
didate for a Q-model for Gβ is derived from 93(π) ®,(α/) S ( C + ® Q ) —
see B.7 for the notation ί(α'). Here α':»(π) -> Σ C + ® Q is a lifting
of α.

Note that C + ® Q is chain-homotopy equivalent to C + and can
be used as the first step in building a β-model for C + ® β since it
contains an imbedded subcomplex isomorphic to C + (g> β with the
property that the coproduct is trivial on this subcomplex. This means
that we can use the obstruction theory developed in this section to
kill off S ( C + <g> β)/C+ ® Q. After each step the vanishing of the
coproduct on the imbedded copy of C+ ® Q means that the twisted
tensor product used will be trivial on C + ® Q and the result will still
contain an imbedded copy of C+ <g> Q.

In our case we have 95(π) ®/(α') S(C+ ® Q). This contains an
imbedded copy of C+ ® Q as a subcomplex and an imbedded copy of
95(π) θα' C + ® Q—the latter is not a subcomplex, however. In apply-
ing our obstruction theory we will map this copy of 93(π) θ α ' C+ ® Q
to its image in 53(π) ®/(α/) 5 ( C + ® Q) and compute the obstruction
to the map being a chain-map. The boundary in the twisted tensor
product is <9<8(π) + 3s(c+®β) + α n *> a n ^ i n t^16 twisted direct sum it is
&B(π) + dc+®Q + a The only possible contribution to the obstruction
can occur where these two boundaries differ (since the obstructions
result from computing the homology images of <9<B(π)θα c+<g>β—which
will be 0 if that boundary agrees with the boundary of the twisted
tensor product). The lowest dimension in which this can happen is
5—the difference is equal to the class of the cocycle

QS(π)5 θ C + ® β Λ ®(π)5 A <B(π)3 0 2S(π)2

 a2? H2(C) ® 72(π).

Note that, since the obstruction restricts to 0 on the C+ ® Q sum-
mand it is not necessary to ever modify the inclusion on the C + ® Q-
summand to make it a chain-map. It follows that, if this obstruction
vanishes, we don't create any additional obstructions in higher dimen-
sions by modifying the inclusion to make it a chain-map5.

A similar argument implies that:

COROLLARY 3.4. If the fy-homological dimension ofπ is k > 2 there
exist at most k - 4 significant obstructions to topologically realizing a
Qπ-chain complex.

5This might have happened if we had to alter the inclusion of C + θ Q into S{C+ ΘQ).
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The remainder of this section will be spent showing that the ob-
struction theory is nontrivial. Let π = Z5 and let C = Q θ α Σ2Q,
where a e i/ 3(π,Q) is any nontrivial class. Then the obstruction to
realizing C is essentially ι*(a®v) e Jf5(C;Q®/2(π)) = H5{C;I2(π)) =
H5(π;I2(π)) Θ H3(π;I2(π)). The obstruction is contained in the
7/5(π;/2(π))-summand and we will show that its image in H5(π;Q)
= Q under the change of coefficient map is nontrivial. The rational
cohomology algebra of Z5 is the rank-5 exterior algebra. The class v
maps to the class of H2(n;Q) that maps each generator to 1, and it
isn't hard to see that the cup-product of this class with a nonzero class
of H3(π, Q) will be nonzero.

Appendix A. In this appendix we will define appropriate homotopy
theories on the categories in the diagram in the beginning of § 1 and
show that the functors between them preserve homotopy theories. We
will make extensive use of the results and methods of Quillen in part
II of [11]. In fact, in most cases it will only be necessary to indicate a
few minor ways our arguments differ from Quillen's.

Cofibrations in &2-π are defined to be inclusions of simplicial sets
equipped with a π-action (i.e. the inclusion preserves the free π-action
above dimension 0). Here objects of &2-π are regarded as simplicial
sets where simplices above dimension 0 are indexed by elements of π.
Fibrations in &2~π are defined to be maps / such that \S{f)\jn is a
fibration of topological spaces. Note that of trivial cofibrations can be
lifted by lifting simplices 1 σ (in the indexing scheme) and translating
by the action of π.

In SGp-π fibrations and cofibrations are defined exactly as in [11]
except that cofibrations are retracts of free maps in which the free
group that is being attached has its free generators indexed by π.

In SCHA-π and SLA-π fibrations and cofibrations of simplicial
Hopf algebras are defined as in [11] except that the term "simplicial
vector spaces"6 is replaced by "simplicial projective Qπ-modules".

In DGL-π a fibration is a surjective map and a cofibration A —> B
is a retract of a map A —• A® D where D is a free π-Lie algebra on
a free Qπ-module. Here, a free π-Lie algebra D is a free Lie algebra
subject to the condition that [q a, q b] = q [a, b] for all q e π and
a,b eD. In DGC-π fibrations and cofibrations are defined exactly as
in part II of [11]. For that to make sense we need only verify that the
appropriate version of Lemma 5.6 in [11] holds. But this follows from

6Applied to the primitive subcomplexes in SCHA-π.
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the fact that the underlying vector spaces of the Lie algebras involved
are projective Qπ-modules.

Appendix B—Algebraic results. We will fix a projective resolution
Q of Q over Qπ.

DEFINITION B.I. Let M be a Qπ-module. Then M* represents the
projective Qπ-resolution of M that results from forming the tensor
product M ®Q and equipping it with the diagonal π-action. D

REMARK. We will also use Mt to refer to M ® Qim

DEFINITION B.2. If / : C —• Z> is a chain-map the algebraic mapping
cone of /,2l(/), is defined to have chain-modules 2l(/) ί +i = C, θ A + i
and boundary

We will use the following elementary property of algebraic mapping
cones:

PROPOSITION B.3. Suppose the maps f, / ' and s in the following
diagram

c -ri

σ -

-> D
is

"U D'
are defined in all dimensions and are chain maps. Then there exists
a chain-map r defined up to a dimension k such that j o / - / Ό r =
dΦ: C —• D1 if and only if there exists a map m:2l(/) -> 2l(/') that is:
(i) defined up to dimension k + 1 and is a chain-map; (ii) makes the
following commute:

D

Df

up to dimension k.

Proof. Suppose that r exists with the stated properties. Then

m =

is easily verified to be a chain-map, where ί < k. If m exists with
the stated properties the last diagram in the statement of the propo-



196 JUSTIN R. SMITH

sition implies that m induces a chain-map via the projections
/ > : * ( / ) - C . •

DEFINITION B.4. Let f:C —• ΣD be a chain-map. Then the twisted
direct sum of C and D with respect to f is defined to be Σ~12l(/).

DEFINITION B.5. Let B be a DGA-coalgebra and ^ be a DGA-
algebra. Let x and y be chain maps from B \o A. Then:

1. the cα/? product with respect to x, denoted xπ9 is defined to be
the composite (1# ® φ) o (lB®x® 1̂ ) ° (Δ<g> l ^ ) : ! ? ® ^ —• J S ® ^ ;

2. the α φ product of x and y, denoted x U y, is the composite
μo (x® y) oΔ:ΰ —• A;

3. if x is a map of degree - 1 that has the property that dx+xUx = 0
then the twisted tensor product B ®x A is defined to be the chain-
complex B® A, equipped with the differential dx = dβ®A +

REMARKS. 1. The condition on x in statement 3 implies that the
differential for the twisted tensor product is self-annihilating—see [10].
In this case the map x is called the twisting cochain of the twisted
tensor product.

2. A quadruple {A, μ, ψ) will be called a DGA-Hopf algebra if (A, μ)
is a DGA-algebra, (A, ψ) is a DGA-coalgebra, and ψ:A —• A® A
is a homomorphism of DGA-algebras or dually μ:A ® A -* A is a
homomorphism of DGA-coalgebras.

3. Twisted tensor products were originally defined to study the
chain complex of a fibration. Fibrations can be described as semi-
simplicial complexes as "twisted cartesian products"—see [9, p. 405]
or [14, Chapter 2]. The main result (see [9] for details) in this di-
rection is that there exists a chαin-homotopy euqivαlence {fξ,gξ,ψξY
C(B Xζ F) —• C(B)®ξ C(F) from the chain complex of the total space
of a fibration to the twisted tensor product of that of the base and that
of the fiber.

3. The Koszul convention (see [8] for a description of this conven-
tion) implies that if Δ(JC) = Σ , */ ® J/> then

and

α n (x ® y) =
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In addition the following statements are well known:
Facts B.6. (a) d(aUβ) = {da) Uβ + ( - l ) d e ^ α U (dβ); and
(b) d(a n x) = (rfα) Π JC + (-1 ) d e ^ ) α Π (έfcc). D

PROPOSITION B.7. Let C be a commutative DGA-coalgebra A a com-
mutative DGA-algebra and let a:C —> ΣA be a chain-map. Let t(a'):
C -^ Abe defined by t{a'){x) = ( - l ) ^ * ) - 1 ^ * ) . Then t(a'): C -> A
defines a twisting cochain. π

REMARKS. 1. Since a is a chain-map da' = 0. We must show that
a1 U a1 = 0—see the definition of a twisting cochain in the remarks
following B.5. This follows from the fact that C is commutative—
and A is commutative with the opposite parity—because of the shift in
dimensions. If e is of dimension 2n + 2 then interchanging the factors
of A(e) multiplies A(e) by (-1) Λ + 1 , whereas interchanging two factors
in A multiplies their product by (-1)".

2. A similar argument implies that, if the differential of A is identi-
cally zero, any cocycle a:C —> A (in some dimension) defines a twisting
cochain.

DEFINITION B.8. Let C be a Qπ-chain-complex. Then the symmet-
ric algebra S(C) is defined to be T(C)/I, where T(C) is the tensor
algebra and / is the ideal generated by elements of the form {e <g> / -
(-1) °/ ® e} where e e Q and / e Cj.

REMARKS. 1. S(C) has the structure of a DGA-Hopf algebra. It
inherits its coalgebra structure from T(C) and its algebra structure is
induced by tensor-product multiplication. U(M, n) = S(ΣnM), where
the isomorphism maps Ji{x) to x ® ® x (i copies of x) in the even-
dimensional case.

2. It is well-known that S(C ®D) = S(C) ® S(D). It is possible to
show that S(*) maps twisted direct sums into twisted tensor products:

PROPOSITION B.9. Let C Θ/ D be a twisted direct sum (see B.4).
Then S(C Θ/ D) = S(C) ®y, S(D), where f is the twisting cochain
equal to t(f) on C in S(C) and zero on other elements ofS(C).

Proof We use the natural isomorphism S(C θ ΰ ) = S(C) <g> S(D)
described above. First we recall the concept of a principal twisted
object, defined by V. K. A. M. Gugenheim in [9, §2].



198 JUSTIN R. SMITH

DEFINITION. Let B be a DGA-coalgebra and let A be a DGA-
algebra. A principal twisted object is a left 2?-comodule and right
^-module that is B 0 A, apart from the differentials.

REMARK. The important property of a principal twisted object,
for our purposes, is that it must be a twisted tensor product—see [9,
Proposition 2.2].

Claim. S(C Θ/ D) is a principal twisted object. To prove this we
must show a natural structure as a DGA-comodule over S(C) and a
DGA-module over S(D). But these facts follow from the fact that D
is a sub-chain-complex of C θ / D and there exists a natural projection
C ®f D -^ C. We define the right action of S{D) on S(C 0/ D) by
composing 1 0 S{ί)\ S(C ®f D) 0 5(2)) -> 5(C θ / £>) 0 S(C θ / £>)
with the multiplication map S(C θ / D) ® S(C θ / /)) -• 5(C θ / D).
The comodule structure is defined by composing the coproduct map
S(Cef D)^S(C®f D)®S(C®f D) with S(p)® 1: S{C®f D) ®
5(C θ / /)) -• 5(C) ® S(C θ / D). It is not hard to see that the
isomorphism S(C (B D) = S(C) ® S(D) preserves these structures and
the formula for the twisting cochain follows. D

PROPOSITION B.IO. Let (C,ψ,ε) be a DGA-coalgebra and let
(D, ψf,μ,e') be a DGA-Hopf algebra, where the ψ's are the coprod-
uctSy the ε's are the augmentations, and μ is the multiplication ofD.
Form the twisted tensor product C ®>x D with respect to some twisting
cochain x:C —• D. Then the tensor product coproduct on C ®x D is
a chain-map if and only if x has the property that, for every c e C,
ψ'(x(c)) = 1 <g> x{c) + x{c) ®\eD®D.

REMARKS. 1. A twisted tensor product that satisfies the hypotheses
of this proposition will be said to support the untwisted coproduct struc-
ture. In general, a twisted tensor product like that in the statement
will have a coproduct that is twisted in some sense.

2. The hypotheses imply that, in some sense, the restriction of the
coproduct of D to the image of x is trivial.

Proof. We note the existence of an isomorphism of chain-complexes

l c ® Γ ® l/>:(C®C)®β®jc+jc®β(β®Z>) - » ( c ® χ 2))Θ(C0 X D). The

conclusion now follows from the observation that ψ 0 ψ1: C ®x D -+
(C 0 C) 0£(8)x+jc0e (D 0 D) is a chain-map, by the hypotheses on x. Ώ

The following is similar.
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PROPOSITION B. 11 Let C ®x A be a twisted tensor product If the
twisting cochain x has the property that x(c\ cj) = 0, c\ e C, whenever
C\ and C2 have augmentation 0 then C ®x A has the untwisted product
structure.

Proof. We must essentially show that the map μc ® HA- (C X C) ®y

(A<8> A) —• C ® x 4̂ is a chain-map, where >> is the twisting cochain
x®η + η®x. Here η is the composite of the augmentation of C with
the splitting Z ^ AQ of the augmentation of A that carries 1 to the
identity of A. But this follows immediately from the hypotheses. D

Suppose that C is a DGA-coalgebra and / : C —• Σw+1Λf* is a chain-
map. Then / ' (see B.7) defines a twisting cochain t(f): C —> ίl(M, n, Q),
where the image offr(Cn+i+ι) is in ®Q® U(Mif n + i) ®Q®
and the twisted tensor product C ®t(f) ^ ( M Λ, Q) supports the w«-
twisted coproduct structure. This follows from B.7 and B.10.

DEFINITION B.I2. Suppose that X is a DGA-coalgebra and i 7 is a
DGA-algebra. Two twisting cochains ξim.X -+ F, i = 1,2 will be called
ζ-cobordant if there exists a twisting cochain Ξ: X <g> / —> i 7 such that

REMARKS. 1. Recall that the unit interval / is defined, as a DGA-
coalgebra, by:

(a) 70 = Z φ Z, generated by /?o a n d Pi;
(b) /i = Z, generated by #;
(c) Aq = p \ - Po\
(d) Δp/ = Pi ® A , Aq = q®po + pι®q;
2. The twisting cochain Ξ : l 0 / - > f will be called the cobordism

between the &.
PROPOSITION B.I 3 Lei £, f/ όe ξ-cobordant twisting cochains from X

to F andletΞ:X®I -+ F be the cobordism between them. Then there
exists an isomorphism v:X ®^ F —• X <g>η F such that the following
diagram commutes:

X®ζF Λ X ®η F

X

where ε:F —• Q is the augmentation. In addition the following map is
an isomorphism of chain-complexes: V: (X ® /) (g)^/ F —• (X ® /) ®Ξ

F, wΛ r̂e F|X ® po® F and V\X ® q® F is the identity map, and
V\X ® px ® F is v.
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REMARKS. The isomorphism also turns out to be a homomorphism
of comodules over Δ, where Δ is the comultiplication of X. In addition,
if F is a DGA-algebra then v is a right i7-module homomorphism.

Proof. Define the map J"\ X -+ ΛΓ®/ to send c G l t o (- l)dimMjc(g)
q eX®I. We will define f to be 1 + (Ξo J ^ n * : X ® ξ F -> X®,7 F.
In order to prove that this has the required properties we must prove
the following identity:

Fact 1. ( Ξ u Ξ ) o t / =

Proof of identity. This follows from the definition of the coproduct
on /: A(x®q) = (1 ® Γ ® 1) oΔ(x) ® {q ® Po + p\ ® q) so

Aoj?{χ) = ( - l ) d i m M ( i ® Γ ® 1) o A ( x ) ®{q®po + p x ® q).

Let A(x) = Σ; Xi®iX and let d(i) = dim(x/), so dim(zx) = dim(x)-
d(i). Then

Δ o

+ (-1 ) d i m W

where the (_i)<ϋm(*)-</(/) r e s u i t s from the operator T and the fact that

q is 1-dimensional. If we plug this into Ξ®Ξwe get

(Ξ(8)Ξ) o

+ (Ξ ® Ξ) o (-
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(where the additional signs result from our convention regarding the
evaluation of tensor products of maps on tensor products of elements
here we use the fact that the degree of Ξ is -1)

q) ® E(ix

-l)d^Ξ(Xi ® pi) ® Ξ(f

Ξ(Xi (8) Pi) ® Ξ o

Here we have again used the sign convention mentioned above; the
fact that the map Ξ o<y is of degree 0; and the fact that Ξ(x ® p0) = ^
and Ξ(x ® p ^ = η. This proves the identity. D

We will also need the following:

Fact 2. <9{(Ξoj^)n*} = (Ξo J r ) n 5 * + ξn* -ηΓ\* -//U(Ξo j?) n* +

Proof of Fact 2.

d{(Ξ o ^)n*} = 0(Ξ o ̂ ) n* +(Ξ
= (9Ξ) o/n*-(Ξo d s) n* +(Ξ

= -(Ξ u Ξ) o s n* -(Ξ o as) n* +(S o/)πa*

(since Ξ is a twisting cochain and, consequently, satisfies the identity
dΞ+ΞuΞ = 0) = -?/u(Ξ JΓ)n*+(Ξ ^)u^n*-(Ξ ajΓ)n*+(Ξoj^)na*.
The remainder of the proof consists in observing that (dJr)(x) =
x ® P\ - x ® po D

The remainder of the proof of the proposition follows by direct
computation—i.e. let x ® / e X ®̂  i7. Then

^(x ® /) = d(x (8) /) + ξ Π (x ® /)
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and the image of this under υ is

Fact 2 above implies that this is equal to

- ξ n (x ® / ) + η n (x ® / )

+ A/ Π (JC ® / ) + η U (Ξ o JΓ) n (x ® / ) ,

which is the result of taking ^ ( i g / + (Ξo J") n ( x ® / ) ) . D

COROLLARY B.I4. Let C be a commutative DGA-coalgebra, let M
be a tyπ-module and let fcC —> Σ Λ + 1 Af* be two chain-maps that are
chain-homotopic via a chain-homotopy h:C -+ΣnM*. Then there exists
an isomorphism of DGA-coalgebras z\ C ®ί(/1) ίl(AΓ, n, Q) —> C ®ί(/2)
il(M, n, Q) with the following properties:

(a) z commutes with the projections to C;
(b) z is a homomorphism ofίi(M, n, Q)-modules.

REMARKS. This implies that we can define two twisted tensor prod-
ucts to be equivalent, in this setting, if there exists a map satisfying
the conclusions of the theorem. It is not difficult to show that, if
two twisted tensor products are equivalent in this sense, their defining
maps are chain-homotopic.

Proof. We define Ξ by setting Ξojr = e~h-η = -h + h2/2\ 7

where η: C —• Q c ίl(M, n, Q) is the augmentation. This infinite series
is perfectly well defined, when evaluated on any element of C—all
but a finite number of terms vanish identically. This cochain has
the property that dfR = -(dh) U U\ = -(t(fχ) - t(f2)) U 91—this is
the combinatorial property of "exponential" functions with respect to
"differentiation". It, consequently defines a twisting cochain on C ® /
as in B.I3. D

COROLLARY B.I5. Let C be a commutative DGA-coalgebray let M
be a Qπ-module and let f:C -> Σn+ιM* be a chain map. Then C®/(/)
ίl(Af, n, Q) is determined, up to an isomorphism of DGA-coalgebrasf by

7 Exponentiation is done using cup-products.
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the class a(f) e Hn+ι(C, M), where a(f) is the composite f: Cn+Ϊ —•
M0->M.

REMARK. It is well known that the chain-homotopy class of a map to
a resolution is determined by the cohomology class defined as above.

We conclude this appendix with some results on Eilenberg-Mac
Lane spaces and algebraic models for them.

PROPOSITION B.I6. There exists a natural map of DGAΉopf alge-
bras g: U(M, n) —• A(M, ή) that induces a monomorphism in homol-
ogy, in general, and an isomoprhism in rational homology. D

REMARKS. 1. This is proved in [7, §§17-19]. When n is even
the map carries y*(m) e U(M, ή)nt to [m\n \nm] (t copies of m) e
A(M, n)nt. When n is odd the map carries m\ Λ Λ mt to [mi] *

• * [mt] (shuffle product) e A(M, n)nt. The map given here is not
an abelian group homomorphism on the chain level, but it induces a
homomorphism of DGA algebras from U(M,n) to H*(A(M,n)). It
fails to be a homomorphism on the chain level because the relation
γt{rm) = ^γ^m) is satisfied in U(M, ή) but the corresponding relation
isn't satisfied on the chain level in A(M, n). The map to homology
preserves coproducts.

2. It is possible to explicitly give a rational inverse to this map—i.e.
a map / from A(M, ή) <g> Q -> U(M, ή) ® Q that is well defined on the
chain-level. Define:

f([m\ \a " \ζ^pί) = 0 if any of the subscripts of the bars, a f,
are not equal to n\

f([m\\n'-\nmt]) = yι(mi) 7ι(mt)/t\9 if n is even, and;
f([m{ \n'" \nmt]) = mιA"Ά mt/t\9 if n is odd.

PROPOSITION B. 17. The map f defined above induces isomorphisms
in homology and preserves products.

Proof. We will first prove that it induces homology isomorphisms.
Note that f([m\n \nm]) (t times) = 7i(mY/t\ = γt(m) This implies
that / is surjective. If we can show that the boundary subgroup of
A(M, n)nt is in the kernel we will be done, because that will imply
that / induces a well defined map of homology to U(M, n). The
conclusion will then follow from the fact that the composite with g
defined above is the identity map of U(M,n). Let a e A(M,n)nt+\
be some element—we will show that /(boundary of a) = 0. This
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is clear if the boundary of a has any \a in it with a Φ n. We will,
consequently, assume that boundary of a has at least one term all of
whose bars are of order n. This implies that a has precisely t bars of
order n and, at most, one of order 1—see the definition of dj above
in B. 16. (All terms of d$ have bars of order n -1—so that component
of the boundary can be ignored.) That implies that the boundary is
of the form

- [mx\n \nmi\n \nmt] - [mι\n \nmv\n \nmt].

This clearly maps to 0 under / .
The fact that / is a DGA-algebra homomorphism now follows from

the fact that it preserves products on elements of the form [m\n \nm]
and the fact that all other elements with all bars of order n are equiv-
alent to such elements modulo boundaries (which vanish under / ) .

This leads to one of the main results of this section:

THEOREM B.I8. Let Q be a projective Qπ-resolution o/Q and sup-
pose M is a TL-free Iπ-module, or a tyπ-module. Then there exists a
chain-homotopy equivalence of DGA-algebras over Qπ

/ ® l:Λ(Jlf,/ι)®β-+ U{M,n)®Q. α

REMARKS. 1. This follows immediately from the fact that both
terms are Qπ-projective after taking the tensor product with Q and
the fact that / <g> 1 induces isomorphisms in homology.

2. This implies immediately that all of the homological ^-invariants
of A[My n)®Q vanish identically.

Let K(M, n) denote the DGA-coalgebra constructed by Quillen's
theory for an Eilenberg-Mac Lane space. We will construct a DGA-
coalgebra homomorphism from K(M, n) to U{M, n). We will need to
recall some definitions due to Eilenberg and Mac Lane (see [6]):

Consider the cocycle, c, on K(M, n)n that maps [m] ® 1 ® ® 1
to m € M, and let ε:K(M, n) -> Z be the augmentation. In addition,
consider the infinite composite:

\y.K(M,ή) —>3, where f) = « (Δ®l®l)o(Δ®l)oΔ, Δ is the coproduct
of K(M, n)9 and 5 is the inverse limit K(M, ή) +- K{M, n) ®K{M, n) <-
K(M, n) ® here we use the augmentation on the rightmost factor
to project the tensor products. That there exists a well-defined map to
the inverse limit, at all, follows from the fact that ( l®β)oΔ= 1. Now
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form the composite with j k = ck ® e ® :3 —• Mk, where the tensor
product of maps has k factors equal to c and an infinite number of
factors of e and the traget is a Q-tensor product of k copies of the
Qπ-module M. Here we are regarding M as a (nonprojective) Zπ-
chain complex concentrated in dimension n. Note that the fact that
1 ® ε Δ = 1 implies that j k ί) is the same as the composite of j k with
a finite composite of Δ's—call this \)k i

n the remainder of this proof.
We, consequently, get a sequence of chain-maps

*k = Jk o i)/k\ = j k o fo/kl: K{M, n) -> Mk.

Now let m:Mi —• U(M, ή)ιn be the map that sends m\® ® mz

to mi m/ utilizing the DGA-product structure of U(M, n) and
sends 1 € Z = M° = C/(M, «)0 to 1 e t/(A/", w)0. The composite
6 = m o (e + $ι + s2 + ) : K(Mf ri) -> ί/(Af, Λ) is also a chain-map.
The main result of this section is the following:

THEOREM B.I9. The map Θ:K(M,n) -» U(M,n), defined above,
induces isomorphisms in homology and is a homomorphism of DGA-
algebras and of DGA-coalgebras.

REMARKS. 1. Note that the statement about the map being a ho-
momorphism of DGA-algebras implies that it preserves the product
structures.

2. Note the factor of /c! in the definition of sk. This turns out to be
crucial in the proof that 6 preserves products.

Proof. 1. 6 induces homology isomorphisms: This is an immediate
consequence of the existence of the maps g:A(M, ή) —• K(M, n) and
/ : A(M, n) —• U(M, n) defined, respectively, in [6] and the present pa-
per. The first map is a chain-homotopy equivalence (see [16] where an
explicit inverse is constructed) and preserves products and coproducts.
The second map preserves products and coproducts, and consequently
gives rise to a well-defined map in cohomology that preserves cup-
products. The complex U(M, n) has the property that there exists a
class i G Hn(U(M, n),M) evaluating to the identity map of homology,
and with the property that its cup-products with itself also evaluate
to isomorphisms in homology. The naturality of the evaluation map
of cohomology on homology implies that /*(/) G Hn(A(M, n),M) has
this property as well. This immediately implies that S induces homol-
ogy isomorphisms because the cocycle c is precisely a representative
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of the class that pulls back to f*(ι) under g and the construction of
6 consists precisely in forming iterated cup-products of c with itself
and evaluating the result on homology.

2. 6 preserves products and coproducts. This follows from the fact
that 6 is a map from the chain-complex to its homology whose com-
posite with the map U(M, ή) —• A(M, n) —• K(M, n) is the identity.
Here the leftmost map is the one mentioned in B.I6 and the second
map was defined by Eilenberg and Mac Lane in [6]. D

Appendix C—Proof of 2.10. We will use an inductive argument. In
each step we will start with a homotopy-commutative diagram (let
H: T{ -+ (T2)n-\ be the homotopy):

Ά -^ T2

Pl.n-l[ iP2.n-l

{Tx)n_λ - + (T2)n-1

FIGURE C. 1

and the inductive step consists in constructing the corresponding nth-
level diagram. The maps βij, i = 1,2, are essentially like the pro-
jections of a Q-model to its 7th stage—they are actually composites
of these projections with DGA-coalgebra isomorphisms (in the initial
case they are just the projections to the base). The isomorphisms J^
are lim/), j . In the induction step we:

1. form the universal contractible twisted tensor product (as in
2.7) to get (Tύn-x ®Xι Ω((7Ί)Λ_0 and (Γ2)Λ-i ® 2̂ Ω((Γ2) r t_!). We
pull these back over the maps pitj and an argument like that used in
B.13 implies that V i = / ® Ω(/Λ_0 + /ΓΊ*: Tx ®PιJ.Xι Ω((Γi)π_i) ->
T2 ®p2.j'χi Ω((?2)ιi-i) is a chain-map and even a homomorphism of
DGA-coalgebras, where / = eH - 1, and exponents are formed with
respect to cup-products. In addition the following diagram commutes:

Ά -A T2

w 0 2®hjX
Kn-\

FIGURE C.2

where the p\ are the projections of the twisted tensor products.
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2. Form the composites of the /?, with the projections to the n — 1st
stages to get the following diagram:

(Ά)n-i {T2)n-X

ΐ T

r, X τ2

T\®n, .Xι S2((7 i ) n _i) — • 72 ®n, .y7 £ 2 ((7^)«—l)

FIGURE C.3

3. Note that the terms Tι®Pιj.Xι Ω((Tι)n-ι) and T1®Pl).Xl Ω((T2)n-ι)
are acyclic below dimension n—in fact the projections pi9 i — 1,2, are
homotopic to the inclusions of the fibers when we regard the total space
of the Q-model as a twisted tensor product over the (n - l)st stage. It
follows that Hn(Ti®Pιj.Xι Ω((Ti)n^{)) = πΛ(7/) and the pullback of the
characteristic class of the nth stage of 7} as a twisted tensor product
over the n - 1st stage will be a cocycle α, e i/Λ(7/ ®^/7 X/ Ω((7/)/i-i))
inducing an isomorphism in homology (upon evaluation).

4. We form the twisted tensor products of all the elements of
the lower square of Figure C.3 over 7} to get A>-i = (Ti)n-\<S>Xι

{Ti®Pιj.Xι Ω((7 )Λ-i))—herex/iCT-)^! - 7 ) ® ^ , Ω((Γ/)«_1) has its
image entirely in 1 <2)Ω((7τ

/)^_i). The maps 77® 1 ®ηf:Di>n-ι —> 7} are
DGA-coalgebra homomorphisms that are also homology equivalences
—?/ and τ/; are the appropriate augmentation maps. Since j
cohomologous to αi the arguments of B.I3 imply that

fn — \® S(fn) + ΞWΠ*I (T\)n_{ ®Q,.JCI it(7Γw(7^), n, Q)

is a DGA-coalgebra homomorphism, where Ξn = eβ, and δβ = a{ -
/Λ*(α2). The way the αz were chosen implies that (7"z)n_ 1 (S)̂ ,̂
ίX(πΛ(7/), n, Q) is ίsomorphic to (7/)Λ and that the maps A,«-i 7} —̂

/)^_! extend to maps

= (7/)Λ-i ®αf * lX(πΛ(7}), n, β ) ,

where the rcth homotopy module of 7/ is essentially mapped via α/.
If we define /Λ = /w_i ® ̂ ί/^*) + Ξnn* the result follows. D
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