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ABSTRACT. The purpose of this paper is to continue the work begun in [7].
That paper described an obstruction theory for topologically realizing an (equi-
variant) chain-complex as the equivariant chain-complex of a CW-complex.
The obstructions essentially turned out to be homological k-invariants
of Eilenberg-Mac Lane spaces and the key to their computation consists in de-
veloping tractable models for the chain-complexes of these spaces. The present
paper constructs such a model in the Z-torsion free case. The model is suffi-
ciently simple that in some cases it is possible to simply read off homological
k-invariants, and thereby derive some topological results.

Introduction. Recall the bar-construction B(*) of Eilenberg and Mac Lane—
see [2]. If M is an abelian group it is a well-known fact that the chain-complex
of an Eilenberg-Mac Lane space K(M,n) is chain-homotopy equivalent to n-fold
iterated bar construction B (ZM) (which we will denote as A(M,n)). Our main
result is

THEOREM. There is a functor A from torsion free abelian groups to torsion-free
DGA-algebras, and a natural transformation e: B(ZM) — A(M) with the following
properties:

(i) e i3 a homology equivalence;

(i1) A(M) s finitely generated in each dimension if M is finitely generated.

REMARKS. 1. This is essentially Theorem 1.5.
2. This immediately implies the existence of a natural transformation A(M,n) —

Bﬂ_l(ﬂ(M )) that is a homology equivalence.

Before we state our next result we recall the definition of the DGA-algebra
U(M,?2) given in [3, §18]:! For all integers t > 1 U(M,2)9;—1 = 0 and U(M, 2)s,
is generated, as an abelian group, by symbols y:(m) for all m € M and these
symbols satisfy the relations: yo(m) = 1 € U(M,n)o = Z; Yo(m) ® yg(m) =
(o + B)!/ !By +5(m), for all m € M and o, 8 > 0;

v(mi+mg) = Y qa(mi)eys(me); e(rm) = riy(rm),
a+p=t
for all m € M and r € Z.
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For instance U(M,2)4 = T'(M) and U(M,2)y, is a t-fold symmetric power of M—
the submodule of M generated by elements of the form m® - --® m (¢t factors) for
all m € M. Let Q(M) denote the following pull-back (or fibered product):

I'(M)

E

M —— M/2M
4

Note that there exists a natural projection 7: (M) — M. The complex A(M)
defined in §1 has the property that its 1-dimensional chain module is precisely
Q(M). This implies

COROLLARY 1. A splitting of 7: (M) — M naturally determines a DGA-
algebra map U(M,2) — BA(M) which is a homology equivalence.

REMARK. Such a splitting exists if M/2M = 0—e.g. if M is a module over
Z[1/2].

PROOF. The hypothesis implies that Q(M) = M & I'(M), so that B(A(M))2x
has a direct summand equal to M*. We map U(M,2) to BA(M) via the map that
sends ;(m) € U(M,2)2; to [m|z---|am] € BA(M)2x (¢t copies of m). This map
induces an isomorphism of homology. This statement follows from the proof of
Theorem 21.1 on p. 117 of [3]. Theorem 18.1 (of [3]) and the Kiinneth formula
imply that the homology of A(M,2) is Z-torsion free. This implies that the map
7. on p. 117 of [3] is an isomorphism and the conclusion follows. O

If Z, is a projective Zw-resolution of Z then e®1: A(M,1)®Z, — A(M)® Z, is
a chain-homotopy equivalence. This implies that we can use A(M) to compute the
equivariant chain-complezes and some of the homological k-invariants? of Eilenberg-
Mac Lane spaces—these turn out to be significant in topological applications of this
theory:

COROLLARY 2. Let M be a Z-torsion free Zn-module and let Z be a projective
Zr-resolution of Z. The first homological k-invariant of A(M,n) ® Z 1is

(a) o*(z) € Ext}, (M,T(M)) = H3(r,Homz(M,T(M))), if n = 2;

(b) Bua*(z) € Ext3 (M, M/2M) = H3(m,Homz(M, M/2M)), if n > 2;
where a: M — M/2M and B: T(M) — M/2M are the projections and z €
Ext3 (M/2M,T(M)) is the class represented by the following 3-fold extension of
Zm-modules:

— MM MM —T(M)— M/2M —0
0—>I‘(M)® oM —>M® ©()@ /

where map 1 is diagonal inclusion (y(m) — m @ m), map 2 is antisymmetrization
(m1 ® mg — m; ® mg —ma ®my), map 3 is symmetrization (m; @ mg — y(my) +
~(m2) — y(m1 + m2)) and map 4 sends y(m) to the class of m. O

REMARKS. 1. Recall that T'(M) is Whitehead’s “universal quadratic functor”.

2Recall that homological k-invariants are a homological analogue of topological k-invariants—a
chain-complex whose homological k-invariants all vanish is chain-homotopy equivalent to a direct
sum of suspended projective resolutions of its homology modules. For a discussion of homological
k-invariants see [4].
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2. From this result it is immediately clear that the first homological k-invariant
of A(M,2) is a 2-torsion element.

3. This corollary follows from the description of the low-dimensional structure
of A(M) in the discussion that precedes 1.1.

4. The formula Ext3, (M,T(M)) = H3(m,Homgz(M,T'(M))) makes use of the
main result of [6].

5. Here is an example of a module M for which this invariant is nonzero (see [5]
for a proof): m = Z/2Z @ Z/2Z on generators sand t, M =Z@®ZDZ and s and ¢
act via right multiplication by the matrices

01 1 -1 0 0
10 1 and -1 0 -1, respectively.
00 -1 1 -1 0

PROOF. Recall the definition of (M) given in Remark 3 following Theorem 1.
We can define the symmetrization map S: M @ M — (}(M)—it sends m; ® ms to
v(m1) + v(m2) — y(my + mg) € kerg C Q(M). The kernel of this map is A%(M)
(since M is Z-torsion free) and the cokernel is M. The projection to the cokernel
(M) — M is denoted 7. We can, consequently, define maps:

A(M,1); — Q(M), sending [m] to the class of (m,~(m));

A(M,1)2 - M @ M, sending [m;|mz] to m; ® mo;
and it is not hard to see that this is a chain-map from the 2-skeleton for A(M,1)
to the chain-complex C,, where C; = (M) and C; = M ® M and where the
boundary map is S. Furthermore this map induces isomorphisms in homology in
dimensions 1 and 2. This implies the corollary. O

This has immediate consequences in the study of the Steenrod problem and the
related question of when chain-complezes are topologically realizable. Let K(m, 1)
denote the universal covering space of a K(m,1). The first result of the present
paper, coupled with the theory of realizations of chain-complexes presented in [7]
implies

COROLLARY 3. Let X be a topological space with m1(X) =m, Hy(X;Zr) =M,
a Z-torsion free Zm-module, and with H;1(X;2Z7) = H;42(X;Zn) = 0 for some
1 > 2 and suppose that H;j(X;Z7) = 0 for all 2 < j < ¢. If the first k-invariant
of X is 0 then the k-invariant of X in H*3(K(M,1) xr K(m,1); Hiyo(K(M,1)) =
H'*3(K(M,3) x5 K(m,1); V) = H3(r,Homz (M, V)) must be equal to

a*(z) defined in statement (a) of Corollary 2 if i = 2 (here V = T'(M));

Bua*(z) defined in statement (b) of Corollary 2 if i > 2 (here V = M/2M). O

REMARKS. We take the cartesian product of K (M, ) with K(r,1) and equip
the result with the diagonal m-action so that we will have a space upon which 7
acts freely.

COROLLARY 4. Let C be an i + 3-dimensional projective Zr-chain-complez for
some 1 > 2 with

1. Ho(C) =Z and H;(C) = M, a Z-torsion free Zm-module;

2. Hi(C)=0 forall2 < j <1.

Then C. 1is topologically realizable iff the element e € H**3(C*, M/2M) vanishes
where e 13 defined as follows:
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Let 9N be the Z-free Zm-chain-complex

0—>I‘(M)6>M®M6>M®M6->Q(M)-—»O
and regard it as a resolution of M. Let o: Ct — LN be the unique chain-homotopy
class of chain maps inducing the identity map in homology in dimension t. Then e
18 the cocycle that results from forming the composite

; I'(M) — M/2M. O
Cz+3r+3’ ( )@ /

REMARKS. 1. Here C7 is a desuspension of the algebraic mapping cone of the
unique (up to a chain-homotopy) chain-map C — Z induced by the augmenta-
tion €: C — Z, where Z is a projective resolution of Z over Zw. C7 is uniquely
determined up to an isomorphism (since homotopic maps give rise to isomorphic
algebraic mapping cones).

2. The circled maps 1, 2, 3 and 4 have the same significance here as they do in
the preceding theorem and (M) has the meaning it was given in the discussion
preceding Corollary 1.

3. Since « is unique up to a chain-homotopy, the class e € H**3(C+, M/2M) is
uniquely defined and only depends upon C.

4. See §2 for the proof.

I am indebted to Drexel University for its support of this research.

1. Proof of the main result. Consider the fibered product P, formed with
respect to the following diagram:

° M,
.
M2 fn
f2
M, T
N1

Let the canonical maps from P to the M; be f, P — M;—these have the well-

known property that fi o f; = fj o f; for all + and j. We will make use of the

following well-known properties of such fibered products in the sequel:
PROPERTY 1. The canonical map ¢: P — T has the property that

n
kerc = H ker f;.
=1
PROPERTY 2. Let V be a Z-module and g;: V — M, is a set of homomorphisms
such that f; 0 g; = f; og;. Then the canonical map h: V — P such that g; = f;oh
has the property that ker h = ()i, ker g;.
The remainder of this section will be spent extending the chain-map defined in
the proof of Corollary 2 to the higher dimensions of A(M,1).
DEFINITION 1.1. Define Q,(M) to be
1. Zifn=0;
2. QM) ifn=1,
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3. The fibered product of the diagram:
o« M® --®MQeN(M)
. (n factors)

MRAM)OM®---®@ M

(n factors) 1®---®1Q®F

17FQ®1®---®1

QMMM
(n factors)

— M7

Fe1®---®1

ifn>1. O

REMARKS. 1. In the diagram above there are n objects mapping to M™—and
M™ denotes an n-fold tensor product (over Z) of M with itself.

2. Consider the map S,: M™ — Q,_1(M) defined tobe S®1®---®1-1Q®
SRI® - ®l+--+(-1)"1®---®1® S (n—2 factors equal to the identity map
in each term). Property 2 of a fibered product implies that the kernel of this map
sSA2(M)QMQ®- - - ®MNMOAN (M)®M® - QMN-- - NM®- - M®A2(M)
(n — 1 factors in each term) = A™(M).

3. An element of 2, (M) will be denoted by [(my,e1)(m2,e2) - - - (Mp, ep)], where
m; € M and e; € Q(M). The following facts are easily verified:

PROPOSITION 1.2. (a) [(m1,e1)(ma,€e2) - (mp,e,)] maps tom; ® --- @ my,
under the canonical projection p,: Q(M) — M™;

(b) in [(my1,e1)(m2,€2) - - (Mn,en)] if any m; = 0 then the values of the e; for
J # t are not significant;

(c) the kernel of py, is generated by elements of the form

[(m1,e1)(mg,€2) - (Mmn,en)]

with m; = 0 for some ¢ and the corresponding e; equal to S(m ® m') for some
m,m' € M;

(d) any symbol [(m1,e1)(mz,€2) - - - (Mp, en)] withm; = 0 for two distinct indices
1 represents the zero element of Q,(M). O

PROPOSITION 1.3. There exists a bilinear map b: Q;(M)®Q,;(M) — Qi ;(M)
that sends

[(m1,e1)(ma, €2) -+ (M4, €;)] ® [(Mit1,€it1)(Miv2s €iv2) - - - (Mits, €it5)]

to [(mi1,e1)(ma, e2) - - (Mij, €it5)]-

PROOF. Simply note that the fibered products with respect to the diagrams

M: MI
l and 1
(M) —— M Q;(M) —— M’

are (2;(M) and 2;(M), respectively. These fibered products are also submodules
of (M) @ M* and Q;(M) ® M7 so we can form the tensor product of these direct
sums and project onto the summand Q; (M) ® M’ @ M* ®);(M). Now substituting
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the definitions of the 2;(M)’s into this direct sum implies the existence of a linear
map from (M) @ M7 & M* ® Q;(M) to Q;4;(M). D

This tensor product bilinear mapping implies that we can define an analogue to
the shuffle product (in the bar construction) on the Q;(M)’s—see [2].

PROPOSITION 1.4. Define a chain-complezx Q. (M) as follows:

1. Qu(M); = Qi(M) as defined above;

2. the boundary map Q (M) — Q1 (M) is defined to be 0 if i =1 and S, op
where Sy, is defined in Remark 2 above and p s the canonical projection Q;(M) —
M.

Then the map A(M, 1) — Q.(M) that sends [mq]---|my] to

[(m1,w(m1))(mz, w(mz)) - - - (M, w(Mmy))]

18 a chain map. Furthermore it carries the shuffle product on the bar construction
to that on Q.(M) and so defines a homomorphism of DGA-algebras. O

REMARKS. 1. This follows by a straightforward induction on n.

2. This map s not a homology equivalence—for instance property 2 of a fibered
product implies that the cycle module Z;(Q.(M)) = p~1(A"(M)) and property 1
implies that p~1(0) = S2(M)QM® - - OMOMRS* (M)IMR - QM®..
where S?(M) is the image of S—the symmetric product of M.

The final step in computing the model for A(M, 1) consists in modifying this
chain-complex giving a complex denoted A(M) so that the canonical map from
A(M,1) — A(M) becomes a homology equivalence and extending the shuffle prod-
uct to A(M). The main result of this section is

THEOREM 1.5. Let A(M) denote the following chain-complex:

1. AM); =Q(M) ifi<3;

2. A(M); = (M) & B3 -2 F;;(M), where Fij(M) = M7 ® S?(M) ® Mi~2-7;

3. the boundary maps on the Q (M)-summands are identical to those on Q.. (M);

4. the boundary map from Fyj(M) to A(M);—1 has its image in Q,_;(M). It
sendsm; ® - ® S(Mjp1 ®Myy2) @ @My to

[(m1,w(m1)) -+ (0, S(Mjt1 ® Myi2)) - - (Mp,w(my))].

Then the composite A(M,1) — Q.(M) C A(M) is a homology equivalence and
A(M) can be given a DGA-algebra structure to make this map a DGA-algebra ho-
momorphism.

REMARKS. Recall that S?(M) denotes the symmetric product of M—by abuse
of notation we identify it with the image of $: M? — I'(M) and its image in Q(M).
This is possible because M is Z-torsion free.

PROOF. Essentially we constructed A(M) so that A(M),/0(A(M)nt+1) = M™.
If we take that for granted for a moment it is not hard to see that the map
A(M,1) — A(M) described above is a homology equivalence.

Property 1 at the beginning of this section implies that the kernel of the canonical
map (M) - M'is @;;% F;;(M)—note that here the summation starts from
0 rather than 1 in the definition of A(M). Essentially the boundary map from
Q41 (M) kills off one copy of F;;(M) and the terms Fj;(M) in the definition of
A(M) kill off the remaining copies.
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All that remains to be done is to define the DGA-algebra structure A(M).

Claim. We may define u*u' = 0, where u € F;;(M), v’ € Fy;:(M).

This follows from the fact that 1.2(d) implies that the product of the boundaries
of v and ' (which lie in Q.(M)) must be 0.

In order to define z*u, where z € Q;(M) and v € Fy:j»(M) simply note that
the tensor product of z by d(u) (using the tensor product operation defined in 1.3)
will be in the image of some F;»;(M) and this fact will not be altered by shuffling
operations. The product z*u is uniquely defined since the boundary operation on
the F;;j(M)’s is injective. Note that the F;;(M)’s will constitute an ideal in A(M)
under this multiplication law. 0O

2. Proof of Corollary 4. The obstruction to topologically realizing a chain-
complex in [7] are essentially obstructions to the existence of a chain-map from the
original chain-complex to the chain-complex of a partial Postnikov tower.

The chain-complex of such a Postnikov tower will generally be an iterated twisted
tensor product—except in the “stable range” where it will a be twisted direct sum
(i.e. a desuspension of an algebraic mapping cone). This is the case in the present
result. The chain-complex C is topologically realizable if and only if there exists
a chain-map from C to Z & Z ® M inducing the identity map in homology in
dimension 7, where & is essentially the first homological k-invariant of C. (If &
vanishes C is chain-homotopy equivalent to Z @ C*.) Clearly such a chain-map
will exist if and only if there exists a chain-map C* to Z®M (since C and Zd,ZQ@M
are compatible chain-complex extensions of Z by C* and Z ®9M, respectively). The
obstruction to the existence of a chaim-map Ct — Z @ M was described in [7] as
the cocyle that results from taking the following composite:

Cits 5 Civa T Z(OH2)i40 — Hipo(F?) =T(M) — M/2M

where we assume that the a-map has been constructed up to dimension z 4+ 2—but
this is clearly equal to the cocyle described in the statement of the corollary. O
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