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ABSTRACT. The purpose of this paper is to continue the work begun in [7].

That paper described an obstruction theory for topologically realizing an (equi-

variant) chain-complex as the equivariant chain-complex of a CW-complex.

The obstructions essentially turned out to be homological fc-invaxiants

of Eilenberg-Mac Lane spaces and the key to their computation consists in de-

veloping tractable models for the chain-complexes of these spaces. The present

paper constructs such a model in the Z-torsion free case. The model is suffi-

ciently simple that in some cases it is possible to simply read off homological

/c-invariants, and thereby derive some topological results.

Introduction.  Recall the bar-construction B(*) of Eilenberg and Mac Lane—

see [2]. If M is an abelian group it is a well-known fact that the chain-complex

of an Eilenberg-Mac Lane space K(M,n) is chain-homotopy equivalent to n-fold

iterated bar construction B (ZM) (which we will denote as A(M, n)). Our main

result is

THEOREM. There is a functor A from torsion free abelian groups to torsion-free

DGA-algebras, and a natural transformation e: fl(ZM) —► A(M) with the following

properties:

(i) e is a homology equivalence;

(ii) A(M) is finitely generated in each dimension if M is finitely generated.

REMARKS. 1. This is essentially Theorem 1.5.

2. This immediately implies the existence of a natural transformation A(M, n) —*
—n—1
B       (A(M)) that is a homology equivalence.

Before we state our next result we recall the definition of the DGA-algebra

U(M,2) given in [3, §18]:1 For all integers t > 1 U(M,2)2t-i = 0 and U(M,2)2t

is generated, as an abelian group, by symbols 7t(m) for all m G M and these

symbols satisfy the relations: 7o(m) = 1 E U(M,n)o = Z; fa(m) • fß(m) =

(a + ß)\/a\ß\ia+0(m), for all m E M and a, ß > 0;

7t(mi + m2) =    Y   la(mi) • 7/?(m2);     lt(rm) = rl^t(rm),

a+ß=t

for all w E M and r E Z.
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For instance U(M, 2)4 — Y(M) and U(M,2)2t is a ¿-fold symmetric power of M—

the submodule of M* generated by elements of the form m®---®m (t factors) for

all m E M. Let Yl(M) denote the following pull-back (or fibered product):

Y(M)

g

M -y M/2M
p

Note that there exists a natural projection T: Q(M) —► M. The complex A(M)

defined in §1 has the property that its 1-dimensional chain module is precisely

Yl(M). This implies

COROLLARY 1. A splitting of T: Q(M) —> M naturally determines a DGA-

algebra map U(M,2) —* BA(M) which is a homology equivalence.

REMARK. Such a splitting exists if M/2M = 0—e.g. if M is a module over

Z[l/2],
PROOF. The hypothesis implies that Ü(M) = M © Y(M), so that B(A(M))2k

has a direct summand equal to Mk. We map U(M, 2) to BA(M) via the map that

sends 7<(m) E U(M, 2)2t to [m|2 ■ • ■ |2m] E BA(M)2k (t copies of m). This map

induces an isomorphism of homology. This statement follows from the proof of

Theorem 21.1 on p. 117 of [3]. Theorem 18.1 (of [3]) and the Runneth formula

imply that the homology of A(M, 2) is Z-torsion free. This implies that the map

7T* on p. 117 of [3] is an isomorphism and the conclusion follows.      D

If Z* is a projective Z7r-resolution of Z then e® 1 : A(M, 1) ® Z* —» A(M) ® Z* is

a chain-homotopy equivalence. This implies that we can use A(M) to compute the

equivariant chain-complexes and some of the homological k-invariants2 oí Eilenberg-

Mac Lane spaces—these turn out to be significant in topological applications of this

theory:

COROLLARY 2. Let M be a Z-torsion free Ztr-module and let Z be a projective

Zn-resolution of Z.  The first homological k-invariant of A(M, n) ® Z is

(a) a*(x) E Ext|,(M,r(Af)) = #3(7r,Homz(M,r(M))), ifn = 2;

(b) /?,£** (x) E Ext|w(M,M/2M) = i73(7T,Homz(M,M/2M)), if n > 2;
where a: M —> M/2M and ß: Y (M)  —►  M/2M are the projections and x E

Ext|7r(M/2M,Y(M)) is the class represented by the following 3-fold extension of

Ztt -modules:

0 -* Y(M) -^M®M-^M®M-^ Y(M) —+ M/2M -» 0

where map 1 is diagonal inclusion (~i(m) —> m ® m), map 2 is antisymmetrization

(mi ®m2 -^ mi®m2~m2®mi), map 3 is symmetrization (mi ®m.2 —> f(mi) +

7(mj) - 7(mi + m2)) and map 4 sends 7(771) to the class of m.    D

REMARKS.  I. Recall that Y(M) is Whitehead's "universal quadratic functor".

2 Recall that homological fc-invariants are a homological analogue of topological k-invariants—a

chain-complex whose homological fc-invariants all vanish is chain-homotopy equivalent to a direct

sum of suspended projective resolutions of its homology modules. For a discussion of homological

fc-invariants see [4].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EQUIVARIANT STRUCTURE OF EILENBERG-MAC LANE SPACES. I 733

2. From this result it is immediately clear that the first homological fc-invariant

of A(M, 2) is a 2-torsion element.

3. This corollary follows from the description of the low-dimensional structure

of A(M) in the discussion that precedes 1.1.

4. The formula Ext3Zn(M,Y(M)) = H3 (ir,Homz (M,T(M))) makes use of the

main result of [6].

5. Here is an example of a module M for which this invariant is nonzero (see [5]

for a proof): 7r = Z/2Z © Z/2Z on generators s and t, M = Z © Z © Z and s and t

act via right multiplication by the matrices

0 1 1
1 0        1

0    0     -1
and

1 0 0
1        0-1

1-1        0
,    respectively.

PROOF. Recall the definition of Yl(M) given in Remark 3 following Theorem 1.

We can define the symmetrization map S : M ® M —► Ü(M)—it sends mi ® 7712 to

7(mi) -I- 7(777.2) — 7(7711 + 7712) E kerg c fi(M). The kernel of this map is A2(M)

(since M is Z-torsion free) and the cokernel is M. The projection to the cokernel

Q(M) —► M is denoted T. We can, consequently, define maps:

A(M, l)i —► Yl(M), sending [m] to the class of (m, 7(771));

A(M, 1)2 —» M ® M, sending [mi I7712] to mi <g> m2;

and it is not hard to see that this is a chain-map from the 2-skeleton for A(M, 1)

to the chain-complex C», where Ci = Yl(M) and C2 = M ® M and where the

boundary map is S. Furthermore this map induces isomorphisms in homology in

dimensions 1 and 2. This implies the corollary.    D

This has immediate consequences in the study of the Steenrod problem and the

related question of when chain-complexes are topologically realizable. Let A(7t, 1)

denote the universal covering space of a A(7r, 1). The first result of the present

paper, coupled with the theory of realizations of chain-complexes presented in [7]

implies

COROLLARY 3. Let X be a topological space with 7Ti(A) = 7r, Hi(X; Zn) = M,

a Z-torsion free Zir-module, and with Hi+i(X;Zir) = Hi+2(X; Ztx) — 0 for some

i > 2 and suppose that Hj(X; Zit) — 0 for all 2 < j < i. If the first k-invariant

of X is 0 then the k-invariant of X in Hl+3(K(M, i) xn K(tt, 1); Hl+2(K(M, i)) =

Hi+3(K(M,i) xn K(tr,l);V) - i/3(7r,Homz(M,V)) must be equal to

a*(x) defined in statement (a) of Corollary 2 if i — 2 (here V = Y(M));

ß,a*(x) defined in statement (b) of Corollary 2 if i > 2 (here V = M/2M).    D

REMARKS. We take the cartesian product of K(M,i) with A(7r, 1) and equip

the result with the diagonal it-action so that we will have a space upon which 7r

acts freely.

COROLLARY 4. LetC be an i + 3-dimensional projective Ztt-chain-complex for

some i > 2 with

1. Ho(C) = Z and Hi(C) = M,a Z-torsion free Ztt-module;

2. Hj(C) = 0 for all 2<j< i.

Then C» is topologically realizable iff the element e E Hl+3(C+,M/2M) vanishes

where e is defined as follows:
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Let OT be the Z-free Ztt-chain-complex

0 -* Y(M) —» M®M ^M®M —^ Q(M) -* 0

and regard it as a resolution of M. Let a: C+ —► E'ÜH be the unique chain-homotopy

class of chain maps inducing the identity map in homology in dimension i. Then e

is the cocycle that results from forming the composite

Ci+3 —♦ Y(M) —-* M/2M.    a
«i + 3 ®

REMARKS. 1. Here C+ is a desuspension of the algebraic mapping cone of the

unique (up to a chain-homotopy) chain-map C —> Z induced by the augmenta-

tion £: C —* Z, where Z is a projective resolution of Z over Z7r. C+ is uniquely

determined up to an isomorphism (since homotopic maps give rise to isomorphic

algebraic mapping cones).

2. The circled maps 1, 2, 3 and 4 have the same significance here as they do in

the preceding theorem and fl(M) has the meaning it was given in the discussion

preceding Corollary 1.

3. Since a is unique up to a chain-homotopy, the class e E Hl+3(C+, M/2M) is

uniquely defined and only depends upon C.

4. See §2 for the proof.

I am indebted to Drexel University for its support of this research.

1. Proof of the main result. Consider the fibered product P, formed with

respect to the following diagram:

Let the canonical maps from P to the Mt be /¿ : P —► M2—these have the well-

known property that /¿ o /¿ = f} o f0 for all i and j.   We will make use of the

following well-known properties of such fibered products in the sequel:

PROPERTY 1. The canonical map c: P —* T has the property that

71

ker c = J| ker /,.
¿=i

PROPERTY 2. Let V be a Z-module and gi : V —► M¿ is a set of homomorphisms

such that fi o gi = f3 o g3. Then the canonical map h : V —y P such that gi — fioh

has the property that ker to = n"=i ker ft.
The remainder of this section will be spent extending the chain-map defined in

the proof of Corollary 2 to the higher dimensions of A(M, 1).

Definition l.l. Define fin(M) to be

1. Z if n = 0;

2. fi(Af) if n=l;
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3. The fibered product of the diagram:

M ® Ü(M) ®M®---®M
(n factors)

1® 7 ® 1

fi(M) ®M®---®M
(n factors) ?®1<

M ®---®M ®Yl(M)

(n factors)

?M"

if n > 1.    D

REMARKS.   1. In the diagram above there are n objects mapping to M"—and

M" denotes an n-fold tensor product (over Z) of M with itself.

2. Consider the map S„ : Mn —► nn_i (M) defined to be S®1<8>---<8>1-1<8>

S® 1 ®• • • ®"H-\-(-l)"l®---®l®S(n-2 factors equal to the identity map

in each term). Property 2 of a fibered product implies that the kernel of this map

is A2(M)®M®---®Mr\M®A2(M)®M®---®Mr\---nM®---®M®A2(M)
(n—1 factors in each term) = An(M).

3. An element of Qn(M) will be denoted by [(mi,ei)(rri2,e2) • • • (mn,en)], where

mt E M and e¿ E Yl(M). The following facts are easily verified:

PROPOSITION  1.2.   (a) [(mi,ei)(m2,e2) • •• (m„,e„)] maps to mi ® ■■■ ®mn

under the canonical projection pn : Yl(M) —» Mn;

(b) in [(mi,ei)(m2,e2) • • • (m„,e„)] if any mi — 0 then the values of the Cj for

j t¿ i are not significant;

(c) the kernel of pn is generated by elements of the form

[(mi,ei)(m2,e2) ■ ■ ■ (mn,en)]

with nii = 0 for some i and the corresponding e¿ equal to S(m ® m') for some

m,m' E M;

(d) any symbol [(mi, ei)(m.2, e2) • ■ ■ (mn, en)] with mt = 0 for two distinct indices

i represents the zero element ofYLn(M).    U

PROPOSITION 1.3.   There exists a bilinear map b: üi(M)®ü:j(M) -* Ql+j(M)

that sends

(m i+ji ei+j )][(mi,ei)(m2,e2) • • • (m¿,e¿)] ® [(m¿+i,e¿+i)(m¿+2,e¿+2)

to [(mi,ei)(m2,e2) ■ ■ ■ (mi+J,ei+j)].

PROOF. Simply note that the fibered products with respect to the diagrams

Ml Mi

and

Cli(M) -► Ml n3(M) -► M-»'

are Yli(M) and Ylj(M), respectively. These fibered products are also submodules

of Yli(M) ®M' and Qj(M) ®M3 so we can form the tensor product of these direct

sums and project onto the summand fi¿(M) ®M3' ©M% ®Qt(M). Now substituting
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the definitions of the f2¿(M)'s into this direct sum implies the existence of a linear

map from Qr(M) ® MJ © Ml ® fí¿(M) to ni+j(M).    D

This tensor product bilinear mapping implies that we can define an analogue to

the shuffle product (in the bar construction) on the fi,-(M)'s—see [2].

PROPOSITION 1.4.   Define a chain-complex fi*(M) as follows:

1. n»(M)¿ = Yli(M) as defined above;

2. the boundary map Ylt(M) —* fi¿_i(M) is defined to be 0 if i — 1 and Sn o p

where $„ is defined in Remark 2 above and p is the canonical projection f2¿(M) —*

M1.

Then the map A(M, 1) —► H«(M) that sends [mi\ ■ ■ ■ \mn] to

[(m1,u(m1))(m2,w(m2)) • • • (m„,cj(m„))]

is a chain map. Furthermore it carries the shuffle product on the bar construction

to that on fi*(M) and so defines a homomorphism of DGA-algebras.    O

REMARKS. 1. This follows by a straightforward induction on n.

2. This map is not a homology equivalence—for instance property 2 of a fibered

product implies that the cycle module Zi(U»(M)) = p~1(An(M)) and property 1

implies that p_1(°) = S2(M) ® M ® ■ ■ ■ ®M ®M® S2(M) ® M® ■ ■ ■ ® M© ...,

where S2(M) is the image of S—the symmetric product of M.

The final step in computing the model for A(M, 1) consists in modifying this

chain-complex giving a complex denoted A(M) so that the canonical map from

A(M, 1) —> A(M) becomes a homology equivalence and extending the shuffle prod-

uct to A(M). The main result of this section is

THEOREM 1.5.   Let A(M) denote the following chain-complex.

1. A(M)i = Üi(M) ifi<3;
2. A(M)t = iU(M) © ©}~i Fij(M), where FtJ(M) = M' <g> S2(M) ® M'"2^;

3. the boundary maps on the Yli(M)-summands are identical to those on Q*(M);

4. the boundary map from Fij(M) to A(M)i-i has its image in f2¿_i(M). It

sends mi ® ■ ■ ■ ® S(mJ+i ® m.,+2) ® • ■ • ® m¿ to

[(mi,w(mi)) • ■ • (0, S(mJ+i ® mJ+2)) • ■ ■ (mn,ui(mn))].

Then the composite A(M, 1) —► fi»(M) C A(M) is a homology equivalence and

A(M) can be given a DGA-algebra structure to make this map a DGA-algebra ho-

momorphism.

REMARKS. Recall that S2(M) denotes the symmetric product of M—by abuse

of notation we identify it with the image of S : M2 —► Y(M) and its image in Yl(M).

This is possible because M is Z-torsion free.

PROOF. Essentially we constructed A(M) so that A(M)n/d(A(M)n+i) = Mn.

If we take that for granted for a moment it is not hard to see that the map

A(M, 1) —* A(M) described above is a homology equivalence.

Property 1 at the beginning of this section implies that the kernel of the canonical

map Yli(M) —* Ml is ©!=0 ■^(■^0—n°te tfi&t nere the summation starts from

0 rather than 1 in the definition of A(M). Essentially the boundary map from

fi¿+i(M) kills off one copy of Fij(M) and the terms Fzj(M) in the definition of

A(M) kill off the remaining copies.
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All that remains to be done is to define the DGA-algebra structure A(M).

Claim. We may define u*u' — 0, where u E FtJ(M), u' E Fi'j<(M).

This follows from the fact that 1.2(d) implies that the product of the boundaries

of u and u' (which lie in 0, (M)) must be 0.

In order to define z*u, where z E fi¿(M) and u E Fi>ji(M) simply note that

the tensor product of z by d(u) (using the tensor product operation defined in 1.3)

will be in the image of some Fíhj(M) and this fact will not be altered by shuffling

operations. The product z*u is uniquely defined since the boundary operation on

the Fij(Mfs is injective. Note that the F¿_,(M)'s will constitute an ideal in A(M)

under this multiplication law.    D

2. Proof of Corollary 4. The obstruction to topologically realizing a chain-

complex in [7] are essentially obstructions to the existence of a chain-map from the

original chain-complex to the chain-complex of a partial Postnikov tower.

The chain-complex of such a Postnikov tower will generally be an iterated twisted

tensor product—except in the "stable range" where it will a be twisted direct sum

(i.e. a desuspension of an algebraic mapping cone). This is the case in the present

result. The chain-complex C is topologically realizable if and only if there exists

a chain-map from C to Z ©ç Z ® 9JÎ inducing the identity map in homology in

dimension i, where £ is essentially the first homological /¿-invariant of C. (If £

vanishes C is chain-homotopy equivalent to Z © C+.) Clearly such a chain-map

will exist if and only if there exists a chain-map C+ to Z®Wl (since C and Z(BçZ®9Jl

are compatible chain-complex extensions of Z by C+ and Z®9Jl, respectively). The

obstruction to the existence of a chaim-map C+ —» Z ®9Jl was described in [7] as

the cocyle that results from taking the following composite:

Cl+3 — Ci+2 — Z(WV+2)l+2 - Hl+2(TV+2) = Y(M) -+ M/2M
d a,+2

where we assume that the a-map has been constructed up to dimension i + 2—but

this is clearly equal to the cocyle described in the statement of the corollary.    D
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