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COMPLEMENTS OF CODIMENSION-TWO
SUBMANIFOLDS—

III—COBORDISM THEORY

JUSTIN R. SMITH

Introduction* This paper will study the relationship between
the middle-dimensional complementary homology modules of a codi-
mension-two imbedding of compact manifolds and its cobordism
class. We will also obtain general results on the cobordism classi-
fication of codimension-two imbeddings that extend those of Kervaire
([14]) and Levine ([15]) on knots, Cappell and Shaneson (see [7]) on
local knots, parametrized knots and knotted lens spaces as well as
results of Ocken (in [19]) and Stoltzfus (in [37]). We also provide
an algebraic formulation of general results of Cappell and Shaneson
(in [7] and [8]) involving Poincare imbeddings and the codimension-
two splitting problem.

A major tool used in this paper is a type of surgery theory
(developed in Chapter I of this paper and called dual surgery theory)
that is dual to the homology surgery theory of Cappell and Shaneson
in Chapter I of [7] in the following sense: whereas homology surgery
theory measures the obstruction of a degree-1 normal map being
normally cobordant to a simple homology equivalence, dual surgery
theory starts with such a map and measures the obstruction to its
being homology s-cobordant to a simple homotopy equivalence. This
paper shows that dual surgery theory provides an algebraic formula-
tion of the problem that solved in Theorem 3.3 of [7] geometrically.
This theory is applied to show that, for many classes of codimension-
two imbeddings- the set of cobordism classes of imbeddings has a
natural group structure—in fact it is shown to be canonically
isomorphic to a certain subgroup of a dual surgery obstruction
group.

The formulation of dual surgery theory in the present paper
makes use of Ranicki's algebraic theory of surgery (see [25], [26],
and [27]) so that we obtain an "instant dual surgery obstruction"
whose computation doesn't require preliminary surgeries below the
middle dimension. In many interesting cases the dual surgery ob-
struction is shown to be expressible as a linking form on a torsion
module that directly generalizes the Blanchfield pairing (see [4] and
[17]) in knot theory. This is applied in Chapter II of this paper to
describe the manner in which the cobordism theory and the comple-
mentary homology of codimension-two imbeddings interact.

This paper studies condimension-two imbeddings of compact
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manifolds from the point of view of Poincare imbeddings, as
described in [40], [8] and [34]. Our results apply equally to the
smooth, PL or topological categories though in the PL and topologo-
cal cases we assume that all imbeddings are locally-flat.

In Chapter II this theory is applied to study codimension-two
imbeddings. It is shown that, for many interesting classes of
codimension-two imbeddings, the set of cobordίsm classes has a
natural group structure similar to that of knot cobordism classes.
The resulting cobordism groups are shown to be isomorphic to certain
subgroups of the dual surgery obstruction groups—the map being
defined by geometrically associating a dual surgery obstruction to
an imbedding. Results are obtained that completely characterize
the middle-dimensional complementary homology of certain types of
codimension-two imbeddings analogous to simple knots.

CHAPTER I—Dual Surgery Theory

l Introduction* In this chapter we will develop a form of
surgery theory that appears to be particularly suited to the study
of codimension-two imbeddings. Its name, dual surgery theory,
comes from the fact that it is dual to the homology surgery theory
developed by Cappell and Shaneson in [7] in the following sense:
whereas homology surgery theory measures the obstruction to a
surgery problem being normally cobordajit to a homology equivalence,
dual surgery theory starts with a surgery problem that is a homo-
logy equivalence and measures the obstruction to its being homology
s-cobordant to a homotopy equivalence. Dual surgery theory turns
out to be closely related to homology surgery theory—in fact, we
show that the dual surgery obstruction groups are canonically
isomorphic to suitable relative homology surgery obstruction groups.

We will make extensive use of Ranicki's algebraic reformulation
of surgery theory. Since the definitive work on this subject has
not yet been published, we will outline the main ideas and results
from [25] that we use.

A version of dual surgery theory (under the name "torsion
surgery theory"), in the odd-dimensional case, appeared in my
doctoral dissertation [32]. Direct geometric arguments were used
there, along the lines of [38].

The following conventions will be in effect throughout this
chapter:

1. π denotes a finitely presented group and w: π —> Zz — {±1}
is a homomorphism. The integral group-ring, Zπ, will be denoted
by A and have the conjugation defined by the formula g — w{g)g~ι

for geπ;
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2. %:A->A' will denote a local epimorphism of rings in the
sense of Cappell and Shaneson in [7], i.e., for every finite set
Xlf , Xk 6 A', there exists a unit u of A' such that xλu9 , Xku is
contained in %(A);

3. Wh{%) has exactly the same meaning it had in [7], i.e., it
is K1(Ay%(±π);

4. (/, b): (Mm, dM) —>{X, Y) denotes a dual surgery problem with
respect to %, i.e., / is a degree-1 normal map being normal map such
that /1 dM is a simple homotopy equivalence and / itself is a simple
homology equivalence with respect to local coefficients in A'. Here
(X, Y) is an m-dimensional finite simple Poincare pair in the sense of
Chapter 2 of [40] with πλ(X) = π and with orientation character w.

2* A summary of algebraic surgery* Surgery theory studies
the obstruction to a degree-1 normally cobordant to a simple homo-
topy equivalence by performing surgery on it until it is homo-
topically connected up to the middle dimension. The algebraic
mapping cone of the resulting map has a quadratic structure on it
in the middle dimension defined by intersection and self-intersection
numbers which consists of either: (a) a quadratic form, in the even-
dimensional case or; (b) an automorphism of a quadratic form in
the odd-dimensional case—see [13] as a general reference. These
quadratic structures are known (see [40], Chapters 5 and 6) to
measure the obstruction to performing further surgeries on the
normal map to make it a simple homotopy equivalence. One drawback
of this theory is that, before the surgery obstruction can be
measured one must perform preliminary surgeries to make the map
connected up to the middle dimension.

Ranicki has eliminated that difficulty by defining a quadratic
structure on the algebraic mapping cone of the original normal map
that captures the surgery obstruction. In this section we will out-
line the results of Ranicki?s paper, [25], that will be used in the
remainder of this paper, and supplement his formulation of homology
surgery theory1.

Unless stated otherwise all chain complexes will be assumed to
be finite dimensional, finitely generated, free, and based. Let ε be
an integer equal to + or — 1 and fixed throughout this chapter.

DEFINITION 2.1. Let C = (C*, c*) and D = (D*, d*) be n-dimen-
sional chain complexes. Then:

1. C* = (C*, c*) denotes the corresponding dual complex with

1 Highly detailed expositions of this work have recently appeared—see [26] and
[27].
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Cί = Ή.omA(Ctf Λ) {equipped with the dual basis) and dual boundary
maps;

2. If f:C —> D is a chain map the algebraic mapping cone,
C(f), is defined as on p. 22 of [40], i.e., CJJ) = C ^ φ i ) , ,

3. C* = (C*, c*) denotes the chain complex with the same chain
modules, bases, and boundary maps as C but with A acting on the
right according to the formula cX = Xce Ct, XeΛ;

4. The slant chain map \: C* ®Λ D —> Horn , (C%~*, D); x®y\-+
(f\—>f(x)y), where (Cn~*)i = Cn~\ is a simple isomorphism (i.e., it
is an isomorphism that preserves bases);

5. Let the generator, T, of Z2 act on Ct^ΛC via the ε-trans-
position involution: if xeCl and y e Cq, then Tε(x®y) — ( — l)pgy(g)εx.
The Q-group, Qn(C, e) is defined to be the hyperhomology group (see
[10], Chapter XVII) Hn(Z2, C*®AC). An element ψeQn(C, ε) will be
called a quadratic structure on C, and is represented by a collection
of chains ψ8 e (Ct ®^ C)n_s such that:

d{Ot2C)ir. + (-iy-s-\ψs+ί + (-l)s+1Tεψs+1) = 0

and a pair (C, ψ) with ψ 6 Qn(C, ε) will be called a quadratic com-
plex. Such a quadratic complex will be said to be Poincare if
(1 + T^ψoQHJf}1 <S)C) determines a simple homotopy equivalance
of chain complexes via the slant product:

\: C ® (C( ® C). > Cn_r; f (x) (x (g) y). > f(x)y . Q
Z A

®
A

REMARKS. 1. In spite of the quadratic nature of their construc-
tion, the Q-groups are shown to be homotopy functors of chain
complexes in [25]—i.e., a chain homotopy equivalence of chain com-
plexes induces an isomorphism of their Q-groups. If f:C->Cf is a
chain map between complexes we will use the notation /% to denote
the induced map Qn(C, ε) -» Qn(C, e).

2. Henceforth, unless stated otherwise, chain maps between
quadratic complexes will be assumed to preserve the quadratic
structure, i.e., if / : (C, ψ) —• (C, ψ) is a chain map we will assume
that /%(α/r) = ψΛ

3. Ranicki shows (in [25]) that quadratic complexes are direct
generalizations of the quadratic forms and formations that appear
in [23]. In fact he proves that:

(Proposition 1.5 of [25]): The homotopy classes of O-dimensional
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quadratic {Poincare) complexes over A are in a natural 1-1 corres-
pondence with the isomorphism classes of {nonsingular) quadratic
forms over Λ. Poincare complexes correspond to nonsingular for-
mations. •

(Proposition 1.8 of [25]): The homotopy classes of connected
1-dimensional quadratic complexes are in a natural 1-1 corres-
pondence with the stable isomorphism classes of split quadratic
formations over A. Poincare complexes correspond to nonsingular
formations. •

This correspondence maps the quadratic complex (C, ψ), where
C is 0 —> C1 —» Co —> 0, to the formation (the notation here follows
[25]):

—here a split formation is like an element of the split unitary

group SU(A) defined in [31]—see § 5 of the present paper for more
details.

DEFINITION 2.2. If C = (C, ψ), C = (C, ψ') are quadratic n-
dimensional complexes the direct sum, CQ)C'f is defined to be
(C © C\ ^ θ f') where ψ@ψfB Qn(C φ C, ε). Π

If C and C are Poincare, C φ C will be Poincare.

DEFINITION 2.3. 1. Let f\C->D be a chain map from an
^-dimensional chain complex to an n + 1-dimensional chain complex
and define the relative Q-group, Qn+1(/f ε) to be Hn+1(Z2, C{f ®Λ /)),
where C(fι®f) is the algebraic mapping cone (see 2.1, part 2) of
the Z[Z2]-chain map f ®Λ f: C*®AC-+ Ώι ®A D (Za acts on C(p ®Λ f)
via Tε). An element (δ^, ̂ ) eQn+1(f, ε) is represented by a collection
of chains (δ^, ψ)s e {Dι ®Λ D)n_s+1 © (C* (g)̂  C)w_s such that:

)(/W)W - o
= 0 .

2. A pair (/, (δ^, f)), where / is a chain map as above and
(δψ, njr) e Qn+1(f, ε) will be called a quadratic pair and it will be
called Poincare when the relative class ((1 + Tε)δψ0, (1 + Tε)ψ0) e
H^f1 (x) /) induces a simple homotopy equivalence via the slant
product:
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\: C(fY ® (C{Γ ® /)).+1 > D M + 1 _ r
Z ,ι

(g, h)(g)(u(g)v,χ(g)y) i > g(u)v + Mx)f{y) ,

(g,h)eDt(g)Cr-1

t u®ve(Dt(g)D)n+1, x®ye(C

If (f:C-^D, (δψ, ψ) e Qn+1(f, ε)) is an w + 1-dimensional quad-
ratic pair, the ^-dimensional quadratic complex, (C, τ/r), will be called
its boundary;

3. If C=(C, ψ) and C" = (C", ψθ a r e t w o ^-dimensional Poincare
complexes and (C@C, f φ — τ/r') is the boundary of an w + 1-dimen-
sional Poincare pair, C and C" will be said to be corbordant. •

Ranicki has defined several standard constructions, involving
quadratic complexes and pairs, that directly correspond to geometri-
cal constructions. We will list them, and describe their properties:

DEFINITION 2.4. The mapping cylinder construction: Let / :
(C, ψ) —> (C, ψ') be a chain map between ^-dimensional quadratic
complexes. Then ( C 0 C , ^ 0 —ψf) is the boundary of the n -+- 1-
dimensional quadratic pair:

M(f) = ( / φ l : C φ C > C, (0, v θ - V') e O.+i(/ θ 1, e)) . D

REMARK. Remember that chain maps are implicitly assumed
to preserve quadratic structures. It is not difficult to see that if
C and C are Poincare and / is a homotopy equivalence, then M(f)
will also be Poincare so that homotopy-equivalent quadratic com-
plexes are cobordant.

DEFINITION 2.5. The union construction: Let

Xi = (fc θ fc: C@C > D, (δψ, ψ φ -ψ'))

and

x* = <M Φfc' . C φ C" > D', (δψr, ψ' 0 -ψ"))

be quadratic pairs. Then their union, denoted xx U x2> is defined to be
the quadratic pair (/«,©/£,: CφC"->Z>", (ty ", ^ θ t " ) ) given by:

= i?r_1 φ c;_2 0
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REMARKS. 1. This is a direct algebraic analogue of the opera-
tion of taking the union of cobordisms that have a common
boundary—see Proposition 6.7 of [25].

2. At this point it is possible to prove that the relationship of
cobordism between Poineare complexes is an equivalence relation.
The mapping cylinder construction implies reflexίvίty and symmetry
and the union construction implies transitivity. The mapping
cylinder construction also implies that the set of equivalence classes,
equipped with the direct sum operation, forms a group. Ranicki
proves that this group is isomorphic, in dimension n, to the Wall
group, L;(τr, W), where ε - ( - 1 ) ^ .

Now we will discuss the connection between the algebraic con-
structions above and the geometric problem of surgery.

DEFINITION 2.6. Let (/, 6): (Mm, vM) -> (X, vx) be a surgery
problem, i.e., M is a compact manifold, X is an m-dimensional
(geometric) Poincare complex, / is a degree-1 map and b is a stable
isomorphism of the stable normal bundles vM and vx of M and X,
covering /. If Gf is the algebraic mapping cone of / the quadratic
signature, qf = (Cf9 ψb e Qn(Cfy ε)), of the map / is defined as follows:

Let JP: Σ*-3L+ —• Σ/ M+ (p a large integer) be the stable map
inducing the Umkehr homomorphism on chain complexes defined by
Spanier-Whitehead duality applied to T(b): T(vM) -> T(vx), where M+
and X+ are the universal covering spaces of M and JΓ, respectively,
with basepoints adjoined. The adjoint, F: X+ -+ Ω^Σ00 M+ maps the
fundamental class, [X], of X to an element, F[X], which lies in the
direct summand, H^S™ x M x M/Z2) (here Z2 acts on S°° via the
antipodal map and on M x M via transposition). This last group
is isomorphic to Qn(C(M\ ε)(C(M) is the chain complex of M) and
ψb is defined to be the image of F[X] under the inclusion Qn(C(M),

D

REMARKS. 1. The main Theorem (9.1) of Ranicki's paper, [25],



430 JUSTIN R. SMITH

proves that the quadratic signature of a degree-1 normal map
coincides with its surgery obstruction under the identification of
cobordism classes of Poincare complexes with elements of L8

Λ(π).
Also see [27] for a more detailed exposition.

The quadratic signature, therefore, constitutes an "instant"
surgery obstruction in that no preliminary surgeries have to be
performed below the middle dimension in order for it to be defined.

2. Ranicki defines the maps F and F on the chain level (Pro-
position 2.5 in [25]), using an equivarient form of Spanier-Whitehead
duality (see § 3 of [25]).

3. Ranicki's quadratic signature is essentially a generalization
of Browder's definition of the Kervaire invarient in [5].

Two important properties of the quadratic signature of a degree-
1 normal map are:

2.7. (PROPOSITION 6.6 of [25])—Cobordism invarience: If
(fi, bi): MΓ —> Xf i = 1, 2 are degree-1 normal maps and (F, B):
(W; Mlf M2) -> (X x /; X x 0, X x 1) is a normal cobordism, then
the quadratic signature of (F, B) is a cobordism between the quad-
ratic signatures of the (fif bt). •

REMARKS. Strictly speaking, it is necessary to use a relative
version of the construction in 2.5 to get the quadratic signature of
(F, B)—see § 6 in [25].

2.8. (PROPOSITION 4.4 of [25])—Compatibility: Let (/, 6): Mm->
X be a degree-! normal map that is [m/2]-connected. Then the
quadratic signature of (/, b) coincides with the usual surgery
obstruction as defined by Wall in Chapters 5 and 6 of [40], under
the identification of forms with 0-dimensional and formations with
1-dimensional quadratic complexes described in Remark 3 following
2.1 or Propositions 1.5 and 1.8 of [25]. •

We will conclude this section by giving an algebraic description
of the homology surgery theory of Cappell and Shaneson (see [7])
somewhat more detailed than that in [25].

Recall the geometric problem that homology surgery theory
studies. Let

(/, b): (Mm, 3M) > (X, Y)

be a degree-1 normal map from a manifold with boundary to a
Poincare pair such that f\3M is a simple homology equivalence
with local coefficients in Λf (with respect to %). Then the problem
is to characterize the obstruction to / being normally cobordant to
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a map that induces a simple Λ'-homology equivalence.

We will begin by describing the obstruction groups.

DEFINITION 2.9. A quadratic complex whose tensor product
with Λr is Poincare will be called an %-Poincare complex. Two
^-dimensional g-Poincare complexes, (Cl9 ψ^), (C2, ψ2) will be said to
be %-cobordant if {Cι@C2, ψ1® —ψz) is the boundary of an n + 1-
dimensional quadratic pair whose tensor product with Λ' is Poincare.

PROPOSITION 2.10. The set of %-cobordism classes of n-dimen-
sional %-Poincare complexes, equipped with the direct sum operation,
forms an abelian group denoted by Γ*($). •

At this point we can proceed exactly as in ordinary surgery—
i.e., we can define the homology surgery obstruction to be the
quadratic signature of the map /. The only problem is that, since
/1 dM is not, in general, a homotopy equivalence, the algebraic map-
ping cone of / will be a pair of complexes and we will have to use
the relative quadratic signature (defined in § 6 of [25]) to get a
surgery obstruction that is a Poincare pair, i.e., (C(9/) —> C(/),
(δψ, φ)). In order to handle this additional structural element, we
need three more algebraic constructions due to Ranicki (see [25]):

DEFINITION 2.11.—The boundary construction: Let C=(C, ψ) be
an ^-dimensional quadratic complex. Then the boundary, dC =
(dC, dψ), is defined to be the n — 1-dimensional quadratic complex
given by:

τε)ψ0
0 (_1W7*

'C

: dcr = cr+ι e c - • —> acr_, = c r e c«-r+1

S = \ o o.
: δC"-1-8-1 = C - r - Θ Cr+S+1 » 3Cr = Cr+ι φ C - ' . •

REMARKS. 1. This construction is clearly natural with respect
to maps of quadratic complexes. Proposition 5.4, the results of §7,
and Proposition 8.3 from [25] in conjunction with the results of
handlebody theory together imply that if (C, -ψ ) is the quadratic
chain complex of M/dM, where M is a compact manifold with
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boundary 8M, then 3C is homotopy-equivalent to the Poincare chain
complex of dM.

2. In the proof of Proposition 5.4 of [25], Ranicki shows that
the quadratic pair ξβ(C) = (0 © 1: dCr = Cr+1 φ Cn~r -» (C—*)r, (0, 3ψ>))
is always Poincare (regardless of (C, ψ)). This is an algebraic
analogue of the well-known geometric fact that any finite CW-
complex is homotopy-equivalent to a suitable manifold with boundary
(i.e., imbed the CPF-complex in a Euclidean space and take a regular
neighborhood).

3. In Proposition 5.4 of [25], Ranicki shows that
2.12. The quadratic complex, C, is Poincare if and only if dC

is contractible.

DEFINITION 2.13.—The collapsing construction: Let C = (/: C->
D, (δψ, ψ)) be an ^-dimensional Poincare pair. Then (£(C) = (E, ψ')
denotes the ^-dimensional quadratic complex defined as follows:
E* = C(f), the algebraic mapping cone (see 2.1, part 2);

/ δψ. 0
ψs V

: En-r- = D*-r- 0 Cn~r-S-1 > Er = Dr θ Cr_x . Q

REMARKS. 1. The collapsing construction is the algebraic ana-
logue of the geometric operation of collapsing the boundary of a
manifold to a point.

2. Ranicki proves (in Proposition 5.4 of [25]) that the operations
we have denoted © and 3̂ define mutually inverse bijections between
the sets of chain homotopy types of quadratic complexes and
Poincare pairs with quadratic complexes that are Poincare mapping
via 5̂ to Poincare pairs with contractible boundaries; and in fact:

2.13. If x — (f:C-+D, (δψ, ψ)) is an n-dimensional Poincare
pair, then 5β(K(aj)) is simply homotopy equivalent to x.

DEFINITION 2.14—Algebraic surgery: Let x = (/: C~> D, (δφ, ψ)
be an n + 1-dimensional quadratic pair such that H0((l + Te)ψof*) =
0: JD%-* -> C(f) (i.e., x is connected). Define the ^-dimensional
quadratic complex (C, ψ') obtained from (C, ψ) by surgery on x to
be given by:

dc 0

0 0
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0 Ov

0 1

: C'n-r = C»-r 0 Dn-r+1 0 Dr+ί > C; - Cr 0 Dr+10 Z>*-

M*. (-l)'+e2>.-i/* 0

φ'9 = 0 (-I)-'-*1 W , . ! 0

\ 0 0 0

. C /-r-. = C - r - φ £>-r-.+l φ ^ ^ > # = Cr φ Dr+1 0 Z)- r + 1 .

REMARKS. 1. Algebraic surgery, as defined above, corresponds
to a sequence of geometric surgeries—in fact Ranicki proves (Pro-
position 8.3 in [25]) that a geometric surgery has the effect, on
the quadratic signature of a normal map, of performing an algebraic
surgery with the JD-complex having only a single nonvanishing
chain module of rank 1.

2. As Ranicki points out, the boundary construction is the
result of performing suitable algebraic surgeries on the empty
complex.

The following result is an adaptation of Proposition 7.1 in [25]:

PROPOSITION 2.15. Algebraic surgery preserves the simple homo-
topy type of the boundary and %-Poincare complexes C = (C, ψ),
C" = (C, ψ') are %-cobordant if and only if C can be obtained
from C by surgery and a simple %-homology equivalence.

Proof. 1. The statement about the boundaries of quadratic
complexes was proved by Ranicki in [25]—the remaining statement
is thus a consequence of 2.11.

2. In the proof of 7.1 in [25], Ranicki showed that complexes
resulting from surgery performed on other complexes are cobordant to
them (if the complexes are Poincare)—the same argument implies that
if surgery is performed on an g-Poincare complex the result will be
%-cobordant to it. If there exists a chain map between g J > ( n n c a r έ
complexes inducing a simple .Λ'-homology equivalence, the mapping
cylinder (see 2.3) will be an g-cobordism between the complexes.

All that remains to be proved is that, if C and C" are f$-c°kor-
dant, then it is possible to [perform surgery on C in such a way
that the result is simply Λ'-homology equivalent to C . Our argu-
ment will be similar to that used in the proof of 7.1 in [25]. Let
the g-cobordism between C and C be ( / φ / ; : C 0 C"-> D, (δψ,
Ψ® —ψ')) a n d l e t (P"> Ψ") be the Poincare complex obtained from
(C, ψ) by surgery on the connected (n + l)-dimensional quadratic



434 JUSTIN R. SMITH

pair (g:C-^D', (δψ', ψ)) defined by:

° { ~ i γ lf ) : D'r = Dr 0 C;_χ > DU = Dr_, φ Cr'_2

0 dc I

g=

\ o

Then the chain map

Λ = 0000100®-r.^:c;' =

defines a simple Λ'-homology equivalence of ^-dimensional g-Poincare
complexes h: (C", ψtf) -> (C, ̂ f). This completes the proof of the
proposition. •

As one might expect:

COROLLARY 2.16. An n-dimensional %-Poincare complex repre-
sents the zero element of Γϋ(%) if and only if it is possible to
perform surgery on it in such a way that the result becomes simply
acyclic when the tensor product with Af is taken. •

Now we will return to the geometric situation connected with
homology surgery theory. It is not difficult to see that, if we take
the relative quadratic signature of a homology surgery problem
and perform the collapsing construction on its boundary, we will
get an g-ϊ>°in c a rέ complex which we can define to be the homology
surgery ^obstruction of the normal map. As Ranicki points out in
§ 17 of [25], the same methods that are used to show that ordinary
algebraic surgery theory corresponds to the geometric theory also
apply to this formulation of homology surgery theory. See Appendix
A for an analogous description of relative homology surgery obstruc-
tions.

Now recall the natural map j : Ls

n{π) —> Γs

n(%) defined in Chapter
I of [7], which results from regarding an ordinary surgery problem
as a homology surgery problem. In the context of algebraic surgery
this map can be defined by taking a Poincare complex representing
an element of the Wall group and considering the corresponding
element of the /"-group it defines. We will conclude this section by
proving a technical result that characterizes elements of Γ&%) that
are in the image of the map j :
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LEMMA 2.17. Let x — (C, ψ) represent an element of Γ^(%).
Then x represents an element in the image of the map j defined
above if and only if dx = (dC, dψ) is simply homotopy equivalent
to the boundary of a quadratic complex, y = (D, φ') such that D(&ΛA

r

is simply acyclic.

REMARK. For an analogous result, corresponding to the usual
interpretation of Γ-groups given in § 1 of [25], see 5.6 in the
present paper.

Necessity. Suppose that x does represent an element in the
image of j . It follows that there exists a Poincare complex (not
just an %-Poincare complex), p = (P, φ"), such that x is %-coboγ-
dant to p or x® "V = ( C θ P, ^ 0 -ψ") is g-cobordant to 0.
Corollary 2.16 then implies that it is possible to perform surgery
(see 2.14) on # 0 — p to obtain a complex (D, ψ') such that D®ΛΛ'
is simply acyclic. The conclusion follows from the facts that the
boundary of p is simply acyclic (since p is Poincare—see 2.11) and
surgery preserves boundaries, up to simple homotopy equivalence.

Sufficiency. Suppose that dx is simply homotopy equivalent to
dy, where y is acyclic with coefficients in A'.

We can replace x and y by Poincare pairs z = (fx:C-+C*f

(0, ψ)) and y = (/„: D-+ D*, (0, ψ')) such that the result of collaps-
ing C and D gives us x and y, respectively, up to simple homotopy
equivalence (by Remark 2 following 2.12). Since dx is simply-homo-
topy equivalent to dy (by hypothesis) we can form the union of x
and y along dx (see 2.4)—we can replace fy by its composite with
a simple homotopy equivalence between dx and dy and regard dx as
the boundary of y. The result, z = x U y — (E, ψ") will be given
by:

Er = Cn~

dE

-iθi

{-IT

0

0

lUsx

0

\o
'

dSx 0

1
( — 1/ ~ /y î/ /
•* Er_1 = Qn+1-r Q

0

(-i)*- -s:rε3<fs+

(-l)s/*3f3

°\
0/

Note that « doesn't have a boundary—i.e., it represents an element
of Γi(g) in the image of the map j . The result of collapsing dx in
α;—which, as remarked before, is simply homotopy equivalent to
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x—is given by:

<E(aO = (F, ϊr)

0 dSx

is clearly a chain map preserving quadratic structures. Since its
kernel is precisely D*, which is acyclic with coefficients in A! by
hypothesis, it follows that the map defined above is a simple A'-
homology equivalence and z represents the same element of Γ8J%)
as (£(&), by 2.15. This completes the proof of the lemma. •

3* An algebraic formulation of dual surgery* Throughout
this section n will be a positive integer and ε will equal ( — l)E*/2].

DEFINITION 3.1. Poincare complexes and pairs will be said to
be relatively acyclic if their tensor products with A' (with A acting
on Af via multiplication by the image under %) are simply acyclic
with respect to a preferred base.

Two relatively acyclic ^-dimensional Poincare complexes will be
said to be homology s-cobordant if they are cobordant a via cobordism
that is relatively acyclic.

We are now in a position to define the dual surgery obstruction
groups:

PROPOSITION 3.2. Homology s-cobordism is an equivalence
relation on the set of relatively acyclic n-dimensional Poincare com-
plexes such that simply homotopy equivalent complexes are equi-
valent.

The set of equivalence classes forms a group with respect to the
direct sum operation which we will denote by DZ(%, w) or just

REMARK. We will use the notation Clf ^i)s(C2, ψ2) to indicate
that the Poincare complexes (Cu ψλ) and (C2, ψ2) are homology
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s-cobordant.

Proof. All of the statements are immediate consequences of the
fact that the union of two homology s-cobordisms and the mapping
cylinder of a simple homotopy equivalence between relatively acyclic
complexes are homology s-cobordism (see 2.3 and 2.4 and the remarks
following them). Π

We will need the following lemma in the proof of the main
geometric result:

LEMMA 3.3. Let (CΊ, ψt) be an n-dimensional relatively acyclic
Poincare complex that represents the zero element of DX%). Then
(Cl9 ti)Λ.

Proof. The statement that (Cu ψλ) represents the zero element
of Dn(%) implies that there exists a relatively acyclic Poincare
complex, (C2, ψ2) such that (d 0 C2, ψ^φ ψ2)i(C2y fa). By the defini-
tion of cobordism (2.2, part 3) it follows that (d 0 C2 © C2, fx 0
^2 0 — ψ2)l0. The mapping cylinder of the identity map (see 2.3)
of (CΊ 0 C2, ψt 0 ψ2) defines a homology s-cobordism between (Clf ψd
and (CΊ φ C2 0 C2, ̂  0 f 2 θ - f 2) and the lemma follows from the
union construction (2.4). •

The following corollary will be important in the algebraic analysis
of the groups Dl(%):

COROLLARY 3.4. Let xt — (Cίf ψ%)> i = 1, 2, be n-dimensίonal
relatively acyclic Poincare complexes. Then the xt represent the
same element of D^(%) if and only if there exist (C/, ψfoO, i = 1,2,
such that $i® (C/, ψ[) is simply isomorphic to x2φ(C2\ ψ'2).

Proof. The statement is clearly sufficient. To prove it is
necessary, suppose xι and x2 represent the same element of Ds

n(%).
Then &!© — α2 represents 0 so that (C^C^ ^ © —ψ2) = (C/, ψ2)n0f

and (Cx0C20C2, ^ 0 - f 2 0 ^ 2 ) - ^ 0 ( C 2 0 C 2 , -ψ 2 0f 2 ) = ^ 2 0
(Ci, irζ). Π

THEOREM 3.5. Let (/, 6): (Λf», dM) -> (X, Y) be a dual surgery
problem and let (/, 6) be the quadratic signature of the normal map,
f (see 2.5). Then σ(f, b) is a relatively acyclic n-dimensional
Poincare complex and:

1. The element of J5 (̂g) represented by σ(f, b) depends only
upon the homology s-cobordism class of f;

2. σ(f, b) represents the zero element of Dϋ(%) if and only if
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the map f is (geometrically) homology s-cobordant to a simple homo-
topy equivalence.

Proof. The fact that σ(f9 b) is relatively acyclic follows from
the fact that / induces a simple homology equivalence with respect
to local coefficients in A'. The homology s-cobordism invariance of
the element of D^(%) defined by σ(f9 b) is an immediate consequence
of the cobordism invariance of the quadratic signature—see 2.6.
This also implies that σ(ff b) will be equivalent to zero in Z>£(§) if
/ is homology s-cobordant to a simple homotopy equivalence.

Now suppose σ(f, b) represents the zero element of Di(g). It
follows, from 3.3 that σ(f9 b) is the boundary of a relatively acyclic
in + l)-dimensional Poincare pair. In particular, the ordinary
surgery obstruction of / vanishes, by 2.7, so that there exists a
normal cobordism F: (W; M, M') -> (X, Y) such that F\M = f and
F\Mf is a simple homotopy equivalence. We can regard F as an
(n + l)-dimensional surgery problem (using a Morse function on W,
for instance):

F: (W; M, M') > (X x /, X x 0, X x 1) .

Consider the homology surgery obstruction, x e Γs

n+1 (§), of F (as
defined in the preceding section). This will be represented by an
(n + l)-dimensional g-Poincare complex whose boundary is σ(f9 b).
Since σ(f, b) is also the boundary of a relatively acyclic complex it
follows, from 2.17, that x is in the image of the natural map
j : Ls

n+ι(π) —> Γs

n+1(τ§); suppose yeLs

n+1(π) maps to x. The realization

theorems of [40] (5.8 in the even dimensional and 6.5 in the odd-
dimensional case) imply that there exists a degree 1 normal map
G: (W'\ M\ M") -> (ΛΓ x /; M' x 0, Mr x 1) with G\M' the identity
map, G\M" a simple homotopy equivalence, and with surgery
obstruction — y eLs

n+1(π). Form the union of W with W along the
common boundary Mr and map the result to X x [0, 2]. The result-
ing cobordism

F U G: (W U W; M9 M") > (X x [0, 2]; X x 0, X x 2)

has a homology surgery obstruction (rel M U M") of 0 so that we
can perform surgery to get

FΊ (W"\ M, M") > (X x [0, 2]; X x 0, X x 2) .

The result, W"9 is the required (geometric) homology s-cobordism
from / to a simple homotopy equivalence. This completes the proof
of the theorem. We will conclude this section by stating a realiza-
tion theorem similar to 5.8 and 6.5 in [40] and corresponding results
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in [7J. The proof will be given in the next section.

THEOREM 3.6. Let (Mn~\ dM) be a compact manifold with
πx(M) = re and orientation character w:π —> Z2f and n ^ 6 and let
σeDn($) be an arbitrary element. Then there exists a degreeΛ
normal map F: (W; My M') -> (M x /, M x 0, M x 1) such that dW=
dM x J U I U Mf and:

1. F\(dM x IUM) is the identity map;
2. F is a simple Λf-homology equivalence and F\M': M'—>Mxl

is a simple homotopy equivalence;
3. the dual surgery obstruction of F (reldW) is equal to σ. •

4* Relations with other surgery theories* The main result of
this section is to prove the exactness of the following sequence of
abelian groups:

4.1. >Li+ iW-^rUg)-^Dl{%)-^L s

n{π)-i-+Γ s

%{%) >.. .

Here the L — ,Γ— and D-groups are as defined in §§2 and 3 of this
paper—i.e., they are regarded as algebraic cobordism groups of
suitable quadratic complexes—and the maps ί9 j, and 3 are defined
as follows:

1. i and j are induced by the inclusion of quadratic complexes
representing elements of one surgery group in the other group;

2. 3 is induced by the boundary construction (see 2.10).
For the time being we will simply assume the maps in 4.1 are

well-defined and that the sequence is exact and draw conclusions
from it.

First of all, it is not hard to see that the maps i and j in 4.1
coincide with the geometrically defined maps that result from giving
the surgery groups a bordism-theoretic description along the lines
of § 9 of Wall, [40]. The same is true of the map 3, however,
since:

LEMMA 4.2. Let f: (Mn+1, dM) -> (X, Y) be a homology surgery
problem, i.e., f is a degreeΛ normal map with f\dM a simple Λ'-
homology equivalence and π^X) — π. If σ 6 Γs

n+1(%) is the homology
surgery obstruction of /, then d(σ) e Dlffi) is the dual surgery
obstruction of f \ dM.

Proof. This is an immediate consequence of the way we have
defined the algebraic homology surgery obstruction at the end of
§ 2 and of 2.13 (we are implicitely assuming that the map 3 in 4.1
is well-defined). •
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Our first application of this result is in a proof of Theorem 3.6.
Recall that (ikP-1, dM) is a compact manifold of dimension at least
5 with fundamental group π and we want to construct a cobordism
F: (Wn; M, Mr) -> (M x I; M x 0, M x 1) whose dual surgery obstruc-
tion is an arbitrarily prescribed element, σ, of Di(%). The realiza-
tion theorems of [40] (5.8 and 6.5) imply that we can construct a
cobordism

Ff: (W'n; M, M") > (Λf x I; M x 0, M x 1)

whose ordinary surgery obstruction is i(σ) e L^(π) and we can
assume, without loss of generality, that Fr is a simple Λ'-homology
equivalence (since its homology surgery obstruction vanishes). It
follows that i(σ — σ(F)) = 0, where σ(Fr) is the dual surgery obstruc-
tion of F'. This implies that there exists an element heΓs

n+1(%)
such that d(h) = σ — σ(F'). Now we use the realization theorems
(1.8 and 2.2) of [7] to construct a cobordism G: (Z; W\ W)-+(W x
I; Wf x 0, W' x 1) such that the homology surgery obstruction of
G is equal to h. Lemma 4.2 implies that the dual surgery obstruc-
tion of G\W: W-^ W x 1 -> M x I is precisely σ. •

Throughout the remainder of this section we will assume that
A! = Zπ' where π' is a group and %\ Λ-* Λ' is induced by a homo-
morphism of groups /: π —• π':

Let Φ denote the following diagram of rings:

Recall, from Chapter I of [7], that we can define a relative Γ-group,
Γs

n(Φ) which solves a relative homology surgery problem described
in Theorem 3.3. of the paper [7] of Cappell and Shaneson.

If (/, 6): (M«; d_M, d+M) -> (X; Γ_, Y+) is a normal map into the
simple Poincare triad (X; Y_, Y+), with π1{Y+) = π, π2(X) = π', and
with f\d_M a simple ^'-homology equivalence, then / is normally
cobordant to g: (N; d_N, d+N) —• (X; F_, Y*+) with g a simple /ί'-
homology equivalence and g\d+N a simple homotopy equivalence if
and only if the homology surgery obstruction of / in Γ'%(Φ) vanishes.

It is not hard to see that if /: Mn —> X is a dual surgery pro-
blem and we form the product with a unit interval, / x 1: Mn x
I—>Xx 1, we get a relative homology surgery problem and that
this gives to a well-defined homomorphism

h: D°(%) > Γ'n+1(Φ) .
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THEOREM 4.3. The map defined above, h: Di(%) —> Γ8

n+1(Φ), is an
isomorphism.

REMARKS. 1. In spite of the existence of the isomorphism above,
we will continue to use the notation Z^@) for dual surgery obstruc-
tion groups, since the geometric significance of dual surgery is
different from that of relative homology surgery.

2. It is possible to prove this theorem algebraically and thus
eliminate the requirement that A! be a group ring.

3. The identification of Di(§) with Γs

n+1(Φ) implies the existence
of a homomorphism p: Di(%) —> L8

n+1(%) (see [7], p. 300) which, when
combined with the homomorphism p: Γs

n(%) —> Ls

n(πf), gives rise to a
map of long exact sequences.

I- I- I1

The map from JD^(§) to Ls

n+1(%) will turn out to have important
geometric applications. For a detailed algebraic description of the
homomorphism p: D£(%) —> Ls

n+1(%) see Appendix A.

Proof. This follows from the 5-Lemma upon comparing 4.1
with the long exact sequence in homology surgery theory:

> U+1(π) > Γ'%+M -^ Z);(g) > Ls

n(π) > ...

l . I1 I" 1;
> n+u- Λ) —> r;+1®) —> rum —> riu -+Λ) —

and noting that the maps, u9 are all isomorphisms (see [7], Chapter
I), and that the map h commutes with all of the other maps. •

COROLLARY 4.4. Taking the product with CP2 induces isomor-
phisms DX%)->D:+1(8). •

COROLLARY 4.5. (The π-π theorem): Let f: {Mn, dM)-*(X, Y),
n ^ 6 be a degree-! normal map from the compact manifold (M, dM)
to the Poincare pair (X, Y) and suppose:

1. / and f\dM are simple Λf-homology equivalences;
2. π,(X) = π^Y) = π.

Then there exists a normal cobordism F:(Wn+1, U)—>(X, Y) such
that

1. dU=dMΌdM';
2. dW= UDMΌM';
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3. F is a simple A'-homology equivalence; •
4. F\M' and F\dM are simple homotopy equivalences.

REMARK. This result implies that we can define relative dual
surgery obstraction groups in the usual way. They will be canoni-
cally isomorphic to suitable relative homology surgery obstruction
groups.

Throughout the remainder of this section we will assume that
the group π' is a finite extension of a polycyclic group and that the
kernel of f:π-+ π' is a finitely generated nilpotent group. We will
relate the dual surgery theory developed in this paper with the
local surgery theory of Pardon (in [21]) and [22] and Ranicki (in
[25]). First we must recall the results of [35] regarding "acyclic
localizations". Let / be the kernel ideal of the homomorphism
%\ A -> A', and define S to be the multiplicatively closed set of
elements of A of the form 1 + ϊ, i e /.

LEMMA 4.5. The localization A = A[S~ι\ is well-defined and if
C* is a finitely generated finite dimensional right protective chain
complex C*QAΛ' is acyclic if and only if C*QΛA is acyclic, i.e.,
if and only if Ht(C*) ®Λ A — 0. •

REMARK. This is Theorem 1 of [35].

Recall that the ring A — AIS'1] has the following universal
property: If g: A-^θ is a homomorphism that maps the elements
of S to invertible elements of θ, then g has a unique extension to
g: A -» θ—see p. 50 of [36]. In what follows, let §: A -> A' be the
extension of % (since all of the elements of S map to 16 Λ')f and
let %*: KX(Λ) —> K^Λ') be the induced map in algebraic K-theory.

LEMMA 4.6. Let A = %^\±π') eKλ{Ar). Then the canonical homo-
morphisms

(a) j t : Γf(A -> A) -+ Lf(A) (defined in [7]) and
(b) Pi. Γf(A —> A) —> /!(§) (induced by the identity map of A

and §) are isomorphisms for all i. Consequently, Γl(%) is isomor-
phic to Γf(A). •

REMARK. This is Theorem 6 of [35].
Let Df(A —• A), A a subgroup of KX(A), be dual surgery obstruc-

tion groups in which we have dropped the requirement that com-
plexes representing elements be simply-acyclic over A and that
equivalent complexes be homology s-cobordant—instead we only
require the complexes to be acyclic over A with Whitehead torsion
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in A and equivalent complexes may be only homology fo-cobordant
with Whitehead torsion in A. The following is an immediate con-
sequence of 4.6 and the 5-Lemma:

THEOREM 4.7. The homomorphisms Df(Λ -» A) —> Lf+1(Λ —> A)
induced by the maps

I1 i
Ά

Lf+1(Λ

are isomorphisms for all i. D

REMARK. The map from the relative Γ-group to the relative
Wall group is defined on p. 300 of [7].

COROLLARY 4.8. The homomorphisms Df(A -> A) -» Dϊ($), in-
duced by the identity map of A and §: A —> A', are isomorphisms
for all i, where A = $~^{±πr). If the set S consists of non zero-
divisors, it follows that D*(%) = L\(A/A) (in the notation of Pardon—
[21] and [22]) for all i. •

REMARKS. 1. The local surgery groups, L\(A/A), that appear
here are not quite the same as those defined by Pardon and Ranicki—
our local surgery groups take Whitehead torsion into account with
respect to the subgroup A = §i1(±ττ') eKt(A) like the groups Df(A->
Λ).

2. These results imply the dual surgery groups generalize local
surgery groups—at least if one follows the geometric definition
given in Pardon's thesis [20], or Ranicki's paper [25].

We will conclude this section with a proof of its main result—
namely that the sequence 4.1 is exact.

1. The maps i, j , and d are well-defined: The fact that i and
j are well-defined is clear: in both cases the equivalence relation in
the target group is weaker than that in the domain. It only
remains to prove that the map d is well-defined. Since it clearly
preserves direct sums, it suffices to show that boundaries of com-
plexes representing the zero element of Γs

n+1(%) are homology s-
cobordant to 0. But, if x = (C, ψ) represents 0 in Γ8

n+1(%) it is
possible to perform algebraic surgery on it (see 2.14), without
altering the boundary (up to simple homotopy equivalence), to get
a relatively acyclic complex, by 2.15, and this proves the claim.
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2. Exactness at Di(%): First of all, it is clear that the com-
posite of 9 and i is the zero map. If x e JD^(§) maps to zero in
Li(π) a relatively acyclic complex, (C, ψ), representing x is the
boundary of an n + 1-dimensional Poincare pair (C —» D, (δψ, ψ)).
Since (C, ψ) is relatively acyclic, we can collapse it (regarding it as
the boundary of (C —»D, (δψ, ψ))—see 2.12) to get an g~P°incarέ
complex whose boundary is simply-homotopy equivalent to (C, ψ), by
2.13. This proves the result.

3. Exactness at L»(π): This is clear: a complex representing
an element of Γ&π) maps to 0 in Γ^(%) if and only if it has a
relatively acyclic representative.

4. Exactness at Γs

n+1(%): This is a direct consequence of 2.17
and the fact that the map, d, is well-defined.

5* The highly connected case* In this section we will give
a somewhat simplified algebraic description of the dual surgery
obstructions and the maps that appear in the exact sequence 4.1.

The following result is a consequence of an algebraic argument
analagous to the proof of Lemma 4.3 in [7].

LEMMA 5.1. Let xeDZ(%). Then x has a representative that
has:

(a) only two nonvanishing chain modules if n is odd;
(b) only three nonvanishing chain modules if n is even.
Furthermore, if f: Mn —> X is a dual surgery problem, n ^ 5,

then f is homology s-cobordant to a map / ' : M' —> X that is [(n — 1)/
2]-connected. •

Recall the result of Ranicki in [25] (quoted in the third remark
following 2.1 in the present paper) relating 1-dimensional quadratic
complexes with stable isomorphism classes of split quadratic forma-
tions (see [23] for definitions related to formations).

Before we can proceed we must recall the definition and some
of the properties of split formations, defined by Ranicki in [25]:

DEFINITION 5.2. A split formation, x= (F, ((V), Θ)G)>
 c o n "

sists of:
1. a kernel Hε(F) (see [40], p. 47), where F is a based free

Λ-module;

2. a pair of self-annihilating submodules (in the bilinear and

quadratic forms on Hε(F)), F, and im (j\:G-> F® F*—if the
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second submodule is a subkernel, the split formation will be said to
be nonsingular;

3. a (—ε)-quadratic form θeQ_ε(G) such that j*μ = θ — eθ*e
Horn (G, G*). •

REMARKS. The third statement is the only difference between

a split formation and the formations defined by Ranicki in [23].

Essentially, split formations are to ordinary formations as elements

of the split special unitary group defined by Sharpe (see [31], § 3

or [30], § 3) are to elements of the special unitary group of Wall

(see [40], p. 57). In fact a nonsingular split formation (F, (CVj9 θjF)

defines an element of SU(Λ), (modulo right multiplication by arbitrary

elements of EU(Λ)), namely, (Γ r \ l^h (in the notation of [31],

§ 3), where r and s are chosen so that im (r, s): G -> F(& F* is self-

annihilating, im (7, μ) + im(r, s) = f φ F (see Remark 2 following

9.5 in the present paper) and [a] is any quadratic form such that

a — εα* = r*s.

As shown by Sharpe (in [31]) and Ranicki (in [25]), the addi-
tional structure contained in a split formation is not needed to
describe the Wall surgery obstruction (though it is needed to capture
the relative surgery obstruction in the bounded even-dimensional
case and we will need it for the dual surgery obstruction).

DEFINITION 5.3. A simple isomorphism of split formations

is a triple consisting of simple Λ-module isomorphisms (preserving
preferred bases) a:F->F'9 β:G-+G', and a ( —ε)-quadratic form
(F*, ψeQ_(F*)) such that:

1. ay + a(ψ - eψ*)*μ = y'β: G -> Fr;
2. a*"1," - μ'β\G-±F'*\
3. θ + μ*ψμ = β*θ'β G Q_ε(G). •

REMARK. In 1.8 of [25], Ranicki shows that this is an isomor-
phism of the underlying formations and, conversely, that any
isomorphism of formations is covered by an isomorphism of suitable
split formations.

DEFINITION 5.4. The split formation, T=(P9 ((J), θ)P*\ where

P is a based free module, will be called a trivial split formation. A

stable simple isomorphism of split formations is a simple isomorphism
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of the type # ® Γ - > # ' φ T', for some trivial formations T and I7'.

The following lemma is Proposition 1.8 of [25]—it will play an
important part in the remainder of this chapter:

LEMMA 5.5. The simple homotopy classes of connected (i.e.
H0((l + Tε)ψ0: C

1-* —» C*) = 0) 1-dimensional quadratic complexes are
in a natural 1-1 correspondence with the stable simple isomorphism
classes of split formations over Λ. Poincare complexes correspond
to nonsingular split formations. •

REMARKS. 1. The correspondence maps the quadratic complex:

1'
0 > Cx ^-> Co > 0

to the split formation (ci9 ( ( ^ ° ^ ^ * ) , -tyi + <W)C°).
2. This result provides the link between the algebraic theory

of odd-dimensional surgery of Ranicki and the standard theory due
to Wall since each split formation defines (in a natural way) an
element of the special unitary group SU(Λ) and, hence, an element
of the Wall group Ls

n(π)—in [25], Ranicki shows that this procedure
respects surgery obstructions—i.e., the surgery obstruction defined
by Ranicki (see 2.5 in the present paper) maps to the Wall surgery
obstruction.

3. Let x = (F, θ e Q-ε(F)) be a free based module equipped with
a quadratic form θ, (this is a matrix that gives rise, via symmetri-
zation and restriction to the diagonal, to bilinear and quadratic
forms λ and μ, respectively, on F see—[39], Theorem 1), and
regard x as defining an n + 1-dimensional quadratic complex with a
single nonvanishing chain module, F, in the middle dimension. Now
perform the boundary construction (2.10) on this complex and map
the result to the set of split formations by the correspondence
defined above. The result will be the split formation

—see the discussion preceeding 5.5 in [25]. Such split formations
will be called split graph formations in analogy to a similar con-
struction in [23].

4. Note that the split formation (F, (ΠYθjGj is trivial if
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and only if the map μ: G -> ί7* is a simple isomorphism—this follows
from Lemma 2.1 in [23] or directly from Lemma 5.5 above.

Recall that, in the description of even-dimensional homology
surgery obstructions in Chapter I of [7], a special (-ε)-form
{F, λ, μ) (see p. 286 of [7]) representing an element of Γ8

n+1($) was
said to be strongly equivalent to zero if it contains a submodule,
H, such that:

1. λ, μ\H are identically zero;
2. the image of H in F(&ΛA

f is a subkernel.
In Lemma 1.3 (in [7]), Cappell and Shaneson prove that a special

form represents the zero element of Γ8

n+1($) if and only if its direct
sum with some kernel is strongly equivalent to zero.

The following lemma is a version of 2.17 corresponding to the
description of elements of Γ8

n+1(%) by quadratic forms (where n is
odd):

LEMMA 5.6. Let (F, λ, μ) be a special hermitian form repre-
senting an element, x, of Γs

n+1(%). Then x is in the image of the
natural map j : Ls

n+1(π) —> Γs

n+1($) if and only if the split graph

formation (F9 ( u ), μ)F)f is stably simply isomorphic to a split

graph formation of the form (Ff, ί L, I μ'\F' J, where {Ff, X', μ') is

a special ( — e)-form that is strongly equivalent to zero.

Proof This follows from Lemma 1.3 of [7] (quoted above),
2.17, 5.5 and the third remark following that lemma. •

This implies that:

COROLLARY 5.7. Let n be odd and let D denote the Grothendiek
group of stable isomorphism classes of nonsingular split quadratic
formations over A (with ε — ( —l)(ί4"1)/2) whose tensor product with
Af is trivial and let K be the subgroup generated by graph forma-

tions of the form x — (F, (L ), μ )F ), where (F, λ, μ) is a quadratic
\ \\Λι/ / /

form representing an element of Γs

n+ί(%) that is strongly equivalent
to zero in the sense of p. 286 of [7].

Then the map D —»D̂ {%) defined by mapping formations to the
highly-connected complexes that correspond to them by 5.5 is surjec-
tive and its kernel is K.

Proof. First of all, it is clear that the elements of D corres-
pond to the relatively acyclic Poincare complexes under the corres-
pondence described in 5.5. This implies that there exists a
surjective homomorphism D—>D^(%). That the kernel is precisely
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K is an immediate consequence of Remark 3 following 5.5, and 5.1,
and 2.17, and 5.6. Π

At this point we are in a position to describe the maps that
appear in the exact sequence 4.1.

THEOREM 5.8. The maps, i and d, in 4.1 can be described as
follows:

1. i carries a split formation representing an element of JD^@)
to the class of the automorphism of the standard kernel defined by
it in SUε(Λ)/RUε(Λ) = L'n(π);

2. 3 carries a quadratic form (F, X, μ) representing an element

of Γs

n+i($) to the class of the split graph formation [F, ( u ) , ft )F)

in D°(%). •

We will conclude this section by giving a similar description in
the even-dimensional case. Consider the map of long exact sequences
of surgery obstruction groups in Remark 3 following 4.3:

> L2\+1(τr) > Γlk+ι{%) > Z>i(δ) > Uk(π) > Γ8

2k(%)

> Ls

2k+1(π) >Lh+i(π') >Ut+1(W >£*(*) >Ls

2k(π') >- - • .

P R O P O S I T I O N 5.9. The homomorphism p: D2k($) —> Ls

2k+1($;) is in-
jective.

Proof. This is an immediate consequence of the map of exact
sequences above, the 5-Lemma, and the facts that the homomor-
phisms labeled ® and φ are injective and surjective, respectively
(see Cappell and Shaneson [7], Chapter 1). We will, consequently,
recall WalΓs definition of relative odd-dimensional surgery obstruc-
tion groups, in [40], Chapter 7:

5.10. The elements of Ls

2k+1($) are equivalence classes of quad-
ruples (F, λ, μ, K) where:

(a) (F, λ, μ) is a special ε-Hermίtian form over Λ in the
sense of Chapter 5 of [40] such that (F, λ, μ) ®Λ A' is a kernel;

(b) Ka(F, X, μ)®ΛA
r is a subkernel.

Two such quadruples (Ft, λ<, μ%)i — 1, 2, are equivalent if and only
if there exists a kernel H, over A, with subkernel S such that:

(a) (Fu λi, μd 0 H0 (F2, -λ 2, —μ2) = H, is a kernel, with sub-
kernel S^,

(b) an automorphism of i ? ! ® ^ ' taking Sι®AA' to Kt®
{S®Λf)@K2 is stably in RU(A').
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The following theorem is an immediate consequence of the
definition of odd-dimensional homology surgery groups due to
Cappell and Shaneson in §2 of [7], and Wall's description of the
maps L|fc+1(g) — L8

2k(π) and Ls

2k+1{π') -> Ls

2k+1(%):

THEOREM 5.11. 1. The group D2k(%) is the subgroup of Ls

2k+1(%)
generated by quadruples (F, λ, μ, K) such that the s-Hermitian
form (F9 λ, μ) regarded as representing an element of Γs

2k($), is
strongly equivalent to zero with a pre-subkernel, P, such that the
image of P in F<&ΛA' is K—see [7], p. 286;

2. the map D2k(%) --» Ls

2k(π) in 4.1 carries an element represented
by a quadruple (F, λ, μ, K) to the element of the L-group represented
by the form (F, λ, μ);

3. the map d: Γs

2k+1(%) —> D2k(%) carries the element represented
by an automorphism aeSU(Λ) of the standard kernel S, to the
element of the D-group represented by the quadruple (jPφ JF7*, λ, π,
K), where (JPφi'7*, λ, μ) is a standard kernel with subkernel F
such that ( F φ F*, λ, μ) ®Λ A' = S and K = a(F(g)Λf). Π

It is not difficult to see how the dual surgery obstruction is
computed in this case:

Given a highly-connected dual surgery problem (see 5.1),
/ : M2k ->X, k^2, perform surgery upon M to obtain / ' : M'-*Xf

where / ' is ^-connected. Calculate the ordinary surgery obstruction
of /'—this will be an ε-Hermitian form x = (F, λ, μ), where F is
the ^-dimensional homology kernel and λ and μ are determined by
intersection and self-intersection numbers—see [40], Chapter 5. This
form, x, will be strongly equivalent to zero (after stabilization, if
necessary) since the original map was a simple Λ'-homology equiva-
lence—see Proposition 1.6 of [7]. If P is the pre-subkernel constructed
in the proof of that proposition and its image in x (%}Λ A! is K the
quadruple (F, λ, μ, K) represents the dual surgery obstruction of /.

6* A geometric description of odd-dimensional dual surgery
obstructions* In this section we will give an interpretation of the
odd-dimensional dual surgery obstruction, in the highly connected
case, as linking and self-linking forms on the middle dimensional
homology. These linking forms are defined geometrically and they
are direct generalizations of the Seifert form in knot theory. This
treatment has the advantage of associating dual surgery obstructions
to specific homotopy-theoretic invarients that occur in a dual surgery
problem.

We will essentially use 4.7 coupled with the algebraic descrip-
tions and geometric interpretations of local surgery groups due to
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Pardon (see [21]) and Ranicki (see § 13 of [25]). Though a similar
formulation is possible in the even-dimensional case it does not
appear to offer any advantages in our geometric applications over
that at the end of the preceeding section—the interested reader is
referred to [21] and § 13 of [25] for more details.

The following conventions will be in effect throughout this
section:

1. The map %: A —• A', where as before A — ZG and Af = ZH>
is induced by %0: G —> H, H is a finite extension of a poly cyclic
group and her §o is a finitely generated torsion-free nilpotent
group;

2. S is the multiplicatively closed set in A of elements of the
form 1 + i, i 6 I, where I is the kernel of §;

3. A = ^[S"1]—the existence of this localization is guaranteed
by Theorem 1 of [35];

4. n = 2k + 1 and ε = (-1)*;
5. S = g*(±7r') where §*: K^A) -> Kλ(Λf) is induced by g : l - >

Af extending %—see the remark following 4.5.

We will need the following technical result:

PROPOSITION 6.1. The elements of the set S, defined above, are
non zero-divisors.

Proof. Let Γ be the augmentation ideal of ZK, where K is
the kernel of go> and let / be the kernel of %, as above. Proposition
1.2 in [35] implies that the ideals / and / ' both satisfy the sym-
metric Artin-Rees condition in their respective rings—i.e., given a
finitely generated ZG-module M and submodule L, M In Π L c L In

for all n, if M and L are right modules and In M Γ) LcIn L if M
and L are left modules, similarly for V. This implies, by the Krull
intersection theorem on p. 171 of [36], that the (two sided) ideal of
(right and left) annihilators of elements of S is precisely X1=Γ\J=1I

j

and that the ideal of annihilators of elements of ZK of the form
1 + i', V 6 /', is X2 = f\?=ι (Γ)5. Since Corollary 3 in [6] implies
that the ring ZK doesn't have any zero-divisors it follows that
X2 = 0. Since K is normal in G it follows that In = ZG-{Γ)n so
that Xx = Γi7=ΛZG-{ΓY) = φgi* 3 (X2)i = 0 (regarding ZG as a free
Zif-module) and this proves the proposition. •

The following corollary is the reason for the assumption that
K be torsion-free:

COROLLARY 6.2. If C* is a finitely generated 2k + 1-dimen-
sional k — 1-connected relatively acyclic protective A-complex, then
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the only nonvanishing homology module is Hk(C*)—and this is
Λ-torsion.

Proof. The statement that the homology of C* is Λί-torsion
follows from 4.5. The only possible homology module other than
Hk(C*) is Hk+1(C*) and this will be a submodule of Ck+1. Proposition
6.1 implies that no nonzero submodule of a free module can be
annihilated by elements of S so Hk+ι{C*) must be zero.

DEFINITION 6.3. A t-module consists of a /-torsion module, K,

with a short free resolution: 0—> Fί —> F2 —> K ~> 0 such that:
1. bases for F1 and F2 are specified;
2. j (x) 1: Fx ® j A -» F2 ®Λ A, regarded as an element of Kλ(A),

is contained in B. Π

DEFINITION 6.4. A simple isomorphism of ί-modules Kγ and K2

is an isomorphism / : Kx —> K2 such that / lifts to a simple chain
equivalence of the presentations of Kλ and K2 (regarded as chain-
complexes, and with respect to the preferred bases):

0 > F, > F2 > K, > 0

i i
0 >G, >G2 >K2 >0. Π

REMARKS. 1. Note that ί-modules contain considerably more
structural information than the underlying module. For example,
the set of simple isomorphism classes of ^-module over ZG whose
underlying module is zero is in a 1-1 correspondence with the
elements of Wh(G).

2. Simplicity of isomorphisms of ^-module is a well-defined
concept since an isomorphism between Kx and K2 lifts to a unique
chain homotopy class of chain equivalence between presentations—
[10] p. 77.

3. ί-modules play the same part in local surgery theory as
based free modules in ordinary surgery theory.

We will always assume that when ^-modules are discussed, that
the base ring is a group-ring.

The following lemma is similar to Proposition 1.4 in [21]:

LEMMA 6.5. Let K be a t-module. Then:
1. ϊlomΛ (K, A /A) has the natural structure of a t-module;
2. A simple isomorphism of t-modules f: Kx —»K2 induces a

natural simple isomorphism fd:Ή.omΛ(K2, A/A) —> Hom^ (Klf A/A).
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Proof. Let K be presented by 0 -> F, -> F2 -> K -» 0.

Claim. Hom^ (K, A/A) is presented by:

0 • Horn,, (F2, Λ) -£-> Horn, (2^, A) > Horn, (if, A/A) > 0

where we use the dual bases for the Hom^ (Fi9 A). Assuming this
is true, the statement about maps of ί-modules follows from the
fact that a simple chain equivalence of chain complexes induces a
simple equivalence of the dual complexes (the condition on B implies
that the dual Hom^ (K, A/A) is a ί-module).

We will now prove the claim:
A. // K is A-torsion, Hom^ (K, A/A) = Ext'iK, A). This follows

from the long exact sequence induced by

0 > A > A > A/A > 0

which is Hom^ (K, A) ~> Hom^ (K, A/A) -> Ext^ i ί , A) -> Ext^K, A). But
since A is flat Ext^(Λf, N) = Ext '(M® y ί A, N) (see [10], Chapter 6,
§4), thus

ExtiCBΓ, A) - ExVA(K®Λ A, A)

which vanishes if K is /-torsion and statement A follows.
Now, applying this to the sequence 0 —• Ft —• F2 —> K —> 0 we get

0 > Horn, (Fif A) > Horn, (Fl9 A) > ExtftK, A) > 0

I
HomΓ(JBΓ, AI A)

which implies the lemma. •

DEFINITION 6.6. The following conventions will be in effect
throughout this section. If F is a free module J F * = HomΛ{Fy A),
with the dual basis;

2. If K is a ί-module Kd = HomXiΓ, Z/Λ) with the dual equi-
valence class of bases defined in Lemma 6.5. •

DEFINITION 6.7. Define:
(a) Qε{A, S) = {beA\b - εb = a - εa, aeΛ}/Λ;
(b) Qt(A, S) = {6e J | 6 = εb}/{a + εalaeA};
(c) Qε(A/A) = A/{a + b - εb\ae A, b e A};
(d) /': Q8(A/A) —> Qβ(yl, S) sending a; to x + εx;
(e) ^ : Qε(A, S) ~> Qε(^ί, S) sending x to its class in the target.

If K is a ί-module and ε = ( — l)k then a 2k + l-dimensional t-form
over K, (K, b, q) consists of:
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(a) a Z-bilinear pairing b: K x K—> Λ/Λ such that b(xa, y) =

a b(x9 y) and b(y, x) = ε&O, 2/) for x, y eK;
(b) a function q: K->Qε(Λ/Λ) such that q(xa) = a q(x) a e Qε(Λ/A),

q(x + y) ~ q(x) - q(y) = δ(a, 3/), and 6(x, a;) = ̂ (/'(<?(aO)) . D

REMARKS. 1. A £-form in the present paper is equivalent to a
split ε-quadratic linking form in the terminology of [28]. It is
proved in [28] that a ί-form as defined here is equivalent to an
ε-Hermitian form over a torsion module if 2eS.

2. I am indebted to Professor Ranicki for pointing out the
need for the definition of a ί-form given above (which differs from
the definition in an earlier version of this paper).

3. A t-ΐovm (K, 6, q) will be called nonsίngular if adδ: K—> Kd

is a simple isomorphism. Henceforth, all ί-forms will be assumed
to be nonsingular, unless stated otherwise.

DEFINITION 6.8. Let xt = (Ki9 bl7 qt), ί = 1, 2 be ί-forms. Then
a simple isometry of x, with x2 is a simple isomorphism of ί-modules
/ : Kx -> K2 such that

fd

commutes and qz(f(x)) = qλ(x) for all xeKλ. Π
The connection between D2i+i(§) a n ^ Lllc+1(Λ/Λ) is described by

the following result due to Ranicki (§ 3.4 of [28]):

PROPOSITION 6.9. The following equivalence classes are in one-
one correspondence with each other:

1. the simple isometry classes of (nonsingular) 2k + 1-dimen-
sional t-forms;

2. the stable isomorphism classes of nonsingular split forma-
tions whose tensor products with Λf (via %) are trivial]

3. the simple homotopy classes of k — \-connected 2k + 1-dimen-
sional relatively acyclic Poincare complexes. Π

REMARKS. 1. Our statement differs slightly from that of Pro-
position 13.2 in [25]. This difference is justified by 4.5 and other
results in [35].

2. The relation between relatively acyclic Poincare complexes
and split formations has already been given in 5.5. We will describe
the remaining relations:



454 JUSTIN R. SMITH

A. A k — 1-connected 2k + 1-dimensίonal Poincare complex:

* O > O > ikZ > U ^ 0 = "ψQ — oi/r0

I \ lit I ~ IT

^o N T 1
 \ΨQ \b

0 > C f c + 1 > C f c > M d > 0 φo = ψQ- εfϊ
a

to ίλe ί-/orm (Λf, 6, q), where M = Hk+ι(C*), Md = Hk(C*)
b: M-+ Md maps [x] to ([#] h-> (a?((^0 — εψ*)(z))/s) e ^ d ; q: M-+ Λk

maps [y] to-{ljs){z{ψ1 + d^τo)(^))(l/β); 'where x, y eCk+1, and se S,
z eCk are such that ys = d*z.

B. A nonsingular split formation (F, (CL), θ )G) maps to the
t-form (M9 6, q) where: M = coker (μ: G -> F*)f b: M-* Md maps [x]
to ([y] h^ x(7(g))/s), q: ikf-> Λk maps [y] to (l/s)θ(g)(g)(l/s), where
x, yeί7*, and seS, geG are such that ys = μ(g).

This is proved in § 3.4 of [28] and in 13.2 of [25].
We will now define an important class of ί-forms. The follow-

ing definition is due to Pardon, Ranicki, and Karoubi:

DEFINITION 6.10. A ί-form (M, 6, q) is said to be a t-kernel if
there exists a ί-submodule LaM such that:

( i ) 6, q\L = 0;
(ii) the map b: M/L -» Ld; [x] ι-> ([y] ̂  b(x, y))

is a simple isomorphism of ί-modules. •

REMARKS. 1. This definition is analagous to WalΓs definition of
a kernel—see 5.3 in [40].

2. Ranicki's Proposition 3.4.5 in [28] proves (among other
things) that a ί-form is a ί-kernel if and only if the k — 1-connected
2k + 1-dimensional Poincare complex corresponding to it under the
bijection described in 6.9 is the boundary of a 2k + 2-dimensional
Poincare pair that becomes acyclic when the tensor product is taken
with Λ. This, coupled with 4.5, implies the following equivalent
definitions of a ^-kernel:

DEFINITION 6.10a. A ί-form is a t-kernel if and only if it
corresponds under the bijection described in 6.9 to a k — 1-connected
2k + 1-dimensional relatively acyclic Poincare complex that is homo-
logy s-cobordant to 0. •

DEFINITION 6.10b. A ί-form, (M, b, q) is a t-kernel if and only
if there exists a special (k + 1)-Hermitian form, (F, λ, μ) that is
strongly equivalent to 'zero (when regarded as defining an element
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of Γ|Λ+2(g)—see p. 286 of [7]) and such that:
1. ϋί=coker (adλ: F->F*);
2. b:M->Md maps [y] to ([x] h-» X(Z)/S);

3. q:M->Λk maps [y] to (l/s)/*(s)(l/β)
where a?, yeF*, and seS, 2 6 F are such that #8 = (adλ)(s). Π

Now we are in a position to describe the group Al+i(S) in
terms of ί-forms:

THEOREM 6.11. Let T be the semigroup of simple isometry
classes of t-forms with the operation: (Ml9 blf qλ) + (M2, b2, q2) =
(Λίiφ M2, 6i0&2, Qi®Q2). If T is the associated Grothendiek group
of stable simple isometry classes and K is the subgroup generated
by t-kernels, then T/K = D2

a

k+1(%), the isomorphism being induced by
the bisection described in 6.9.

REMARKS. 1. Pardon ([21]), Ranicki ([25]) and Karoubi ([13])
show that for any ί-form (M, b, q), (M, b, q) + (M, — b9 — q) is simply
isometric to a ^-kernel so that every element of T/K has a repre-
sentative that is an actual t-form rather than just a formal differ-
rence of ί-forms.

2. Suppose / : M2k+1 —> X, k ^ 2, is a highly connected dual
surgery problem with πx(X) = π and satisfying the conditions in
effect in this section and let (C, ψ) be the dual surgery obstruction.
Then, by the theorem above, we can also regard the dual surgery
as a t-form, (T,b,q) where, by statement B following 6.9, M =
Hk+1(C*) = Hk(C*) = keτf*:Hk(M)->Hk(X) (since / is a degree-!
map—see [40], Chapter 2). Furthermore 6 is induced by the map
of chain complexes corresponding to the symmetrization of ψ which,
since (C, ψ) is a quadratic signature of a normal map, coincides
with Poincare duality and therefore b is identical to the geometric
linking form defined by Wall in his original formulation of odd-
dimensional surgery theory.

We can also give a geometric description of />{q(x)) similar to
WalPs definition of the self-linking form on p. 251 of [38]. Let
xeHk(C*) = The represented by an immersed sphere g: Sk -> M and
suppose s6(S is a right annihilator of x. Then we can form the
immersion g s (i.e., regard g as an element of τck(M)—this is a
module over Zπ^M)) and this will be a boundary dp. Now define
q(x) to be the element (p-gf)/s of Λ/Λ, where gf is the immersion,
g, displaced a short distance along the first vector of the framing
and p-gf is the intersection number. Our main result is:

THEOREM 6.12. Let f: M2k+1 -*X be a dual surgery problem.
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with k ^ 2, and suppose that all of the assumptions at the beginn-

ing of this section are in effect, and let (T, b, q) be the dual surgery

obstruction of f, where T = Kk(M). Then /<{q(x)) = q(x) for all xeT

(see 6.7 for a definition of /<: Qε(Λ/Λ) -> Qt(A, S)).

REMARK. This result can clearly be relativized.

Proof. We begin by forming the product / x l I x I->XxI.
Perform surgery on / x 1 rel M x dl so that it becomes k + 1-con-
nected and let the result be F: (W; M x 0, M x /) -> X x I. Let
(Kk+1(W), λ', μ') (here we are using the common surgery-theoretic
notational device of denoting homology kernels by K) be the quad-
ratic signature of F—see the remarks following 2.1. Remark 3
following 5.5 and 6.9 imply that the self-linking form on the dual
surgery obstruction, (T, b, <z)0(T, — b, —q), of F\M x dl is induced
by the exact sequence

0 >Kk+1(W) >Kk+ι(W,MxdI) = Kk+1(W)* >Kk(MxdI) >0

in the following sense: if xeKk(M x dl) = T © T is annihilated by
seS and lifts to x' in Kk+1(W, M x dl) and if zeKk+1(W) is such
that adλ'(ί?) = £c' 8, then /(q(x)) — \\x\ z)/s—this results from the
fact that (T, &, g ) 0 (Γ, —b, —q) corresponds (via 6.9) to the boundary
of (Kk+1(W), λ', μ'). Now note that the proof of Lemma 5.4 in [38]
of Wall implies an analagous statement to the above except that q
and the geometric intersection form, λ, must be substituted for
/*(q(x)) and λ', respectively.

The conclusion now follows from the proof of the compatibility
theorem for quadratic signatures in § 4 of [25], which implies that
\'(x, z) = X(x, z) for all x, z e Kk+1(W). •

DEFINITION 6.13. Let / : (M2k+\ dM) -+ (X, Y) be a dual surgery
problem, where f\dM is a simple homotopy equivalence. Then the
invarient (Kk(M), 6, q), where Kk(M) = ker/^, and b and q are as
described in the second remark following 6.11 and in 6.12 will be
called the t-signature of the map /. Π

REMARK. The ί-signature of a dual surgery problem is nothing
but the particular representative of the dual surgery obstruction
(where D£k+1(%) is regarded as a group of stable isometry classes of
ί-forms as in 6.11) that arises from the geometric context of the
problem.

In the geometric applications to follow we will need the follow-
ing realization theorem for ^-signatures:
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THEOREM 6.14. Let f: (M2k+1, dM) ~> (X, Y), k ^ 2, πλ(X) = π,
and with f\dM a simple homotopy equivalence, be a dual surgery
problem with f k-connected and suppose x e D£k+1(%) is its dual
surgery obstruction rel dM. If (Γ, b, q) is any t-form that repre-
sents x, then there exists a homology s-cobordism of /, rel BM, to
a dual surgery problem / ' : (M'9 dM)-*(X, Y) with f also k-connected
and with t-signature isometric to (T, b, q).

Proof. Suppose the ί-signature of / is (T", &', qf). Since this
represents the same class in Ai+i@) a s (T, b, q), it follows that there
exists ί-kernels (Ki9 bif qt), i = 1, 2, such that (Γ, 6, q) φ (Γ2, 62, q2) ~
(Tr, b\ ? ' ) θ (ΪΊ, bl9 qx). Since (Tl9 bl9 qj is a ί-kernel it follows that
there exists a special ( — l)fe+1-Hermitian form (F,X,μ) that is
strongly equivalent to zero in the sense of Cappell and Shaneson
(see [7], p. 286) such that (Tlf blf qx) = d(F, λ, μ)9 i.e., it satisfies the
conditions of 6.10b. The realization theorem of Cappell and Shaneson
(Theorem 1.8 of [7]) implies that there exists a homology surgery
problem

Fi:(Wl;M9Mί) > Mx I

with homology kernel in dimension k + 1 equal to F and with
intersection and self-intersection forms λ and μ, respectively. De-
finition 2.10 and Lemma 4.2 imply that F1\M1 is /^-connected and its
έ-signature is (Tlf bu qx). The fact that the homology surgery
obstruction of Fl vanishes implies that we may replace F[ with
F"\(Wι,MtMύ-*MxI9 where WΊ is a homology-s-cobordism rel
dM, and its composite with / gives

Fί{WύM9Md >{X, Y)

where the ^-signature of F1\M1 is (T'f V, qf)®{Tl9 blf qj, and W, is
still a homology s-cobordism. Let (Tlt blf qx) be induced by the
— ε-Hermitian form (F,X,μ) in the sense of 6.10b and let {αj e 2\
be a generating set that is in the image of the canonical basis for
ί7* (see 6.10b). Now perform surgery on imbeddings of spheres
whose homology classes are the {αj (this is always possible because
we are working below the middle dimension). Let the trace of the
surgery be

F2:(W;M19 M') > (X, Y)

Then 7.3 in [27] and 2.14 in the present paper imply that the
^-signature of F2\M' is precisely (T',b',q')—i.e., we have killed
(Tl9 bl9 qΊ). An argument like that used in 3.5 implies that the
homology surgery obstruction of F2 rel M1 U M' is in the image of
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the map from a Wall group so that (as in 3.5) it can be killed.
This implies that Mγ and M' are homology s-cobordant and this
completes the proof. •

CHAPTER II. Cobordism Theory

In this chapter we will apply our results on dual surgery
theory to the cobordism theory of codimension-two imbeddings and
its relation to the middle-dimensional complementary homology. We
begin by describing a technical device used to bring imbedding pro-
blems into the framework of surgery theory.

7* Definitions* We will define a homotopy-theoretic analogue
to an imbedding of compact manifolds, known as a Poincare imbed-
ding. This paper will study actual imbeddings of manifolds that
are modeled upon a given Poincare imbedding—these will be called
realizations of the Poincare imbedding.

For a more detailed treatment (and proofs of the results stated
here) see [7], [8], [12], and [34].

DEFINITION 7.1. Let Mm and Vm+2 be compact manifolds. Then
a Poincare imbedding θ = (E, ζ, h) of M in V consists of

1. a 2-plane bundle ζ over M with associated unit circle and
unit disk bundles S(ξ), T(ξ) respectively;

2. a finite CFF-pair (E, S(ξ)) and a simple homotopy equivalence
h: V->E\JS{ζ) T(ξ) with the homology class

im(h([V]))eHm+2(E[jT(ξ\E)

going by excision to a generator of the top-dimensional homology
of (T(ζ), S(ζ)); in the nonorientable case we use homology with
twisted integer coefficients. •

REMARKS. 1. If the map h is a homotopy equivalence with
Whitehead torsion an element, g, of WhfaiV)) we will call θ a
g-Poincare imbedding.

2. If M and V have boundaries we will assume that E is a
quadrad and h:(V, dV)-+(E\J8{ξ)T(ξ), F\J8{ξndMT(ξ)\9M) is a simple
homotopy equivalence of pairs.

3. The definition above is due to Cappell and Shaneson (see [8],
§ 5) and is a specialization of the usual definition found in [40].

4. Condition 2 above and Proposition 2.7 in [40] imply that
(E, S(ξ)) is a Poincare pair with local coefficients in Zπx{V). The
Poincare imbedding θ will be called regular if (E9 S(ξ)) satisfies
Poincare duality with local coefficients in Zπ^E)—through the
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remainder of this paper all Poincare imbeddings will be assumed to
be regular.

5. The composite h~ιz: M-+ V, where z is the inclusion of M
in T(ξ) as zero-section, will be called the underlying map of θ; if
this map preserves orientation characters θ will be said to be
orίentable.

6. Clearly any actual locally-flat imbedding / of M in V induces
a Poincare imbedding θf = (E, ξf h)—T(ξ) is a tubular neighborhood
of f(M) and E is its complement.

7. Throughout the remainder of this paper we will make the
assumption that ker πx(E) —> πx(E) \JS[5) T(ξ) is a cyclic group, which
will be denoted C#. See [9] or [34] for a proof that this is no
significant loss of generality in making this assumption. We will
also use the notation Gθ for π^E)—this is clearly a TΓ^TO-extension
of Cθ. The class of this extension as well as Cθ are completely
determined in Proposition 1 of [33], in the case where the underly-
ing map of θ induces an isomorphism of fundamental groups and a
surjection to second homotopy groups.

DEFINITION 7.2. Let Mm and Vm+2 be compact manifolds, let
θ = (E, ξ, h) be a #-Poincare imbedding of M into V, and let / : Λf->
V be an actual locally-flat imbedding with normal bundle η and
associated unit disk and unit circle bundles T(J)) and S(y})9 respec-
tively. Then / will be called a realization of θ if there exists a
map e: E' -> E, where Ef =V - T(ξ) (identifying T(η) with a tubular
neighborhood of f(M) in V) such that:

(a) c\S(7)): Sty) -* S(ξ) is a bundle isomorphism;
(b) c\Jl:E' (jS{η) T{η) ^V-^E \JΈ,ζ) T(ξ) is a homotopy equi-

valence, with Whitehead torsion g, that is homotopic to h. •

REMARKS. 1. The map, c, appearing in the definition above, will
be called the complementary map of the realization.

2. Excision and the additivity of Whitehead torsion over finite
unions imply that the complementary map of any realization of a
0-Poincare imbedding will be a homology equivalence with respect
to local coefficients in Zπx(V) with Whitehead torsion equal to g
(using the same local coefficients).

3. The remark above implies that the complementary map of
any realization of a #-Poincare imbedding is always an integral
homology equivalence so that it induces an isomorphism in real
if-theory. It follows that there exists a unique (up to isotopy) map
of stable normal bundles covering such a complementary map. This
implies that, if we regard a complementary map as defining a
surgery (or dual surgery) problem there will be a unique framing.
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With this in mind, we will omit all mention of the framing in the
future.

Note that, in this definition, V can be any manifold homotopy
equivalent to V. Since we will often want to insure that V is
homeomorphίc to V we make the following definition:

DEFINITION 7.3. Let θ and / be as in 7.1—then / will be called
a normal realization if {V, c U 1), where c is the complementary
map of /, and (V, h) are s-cobordant. •

One important property of regular Poincare imbeddings is:

PROPOSITION 7.4. Let c be the complementary map of a reali-
zation f: Mm —> V'm+2 of a regular Poincare imbedding θ = (E, ξ, h)
of M into Vm+2. Then c induces split surjectίons in homology and,
in particular, if Er is the complement off(M) in V, H^E'; Zπ1(E)) =
Ht(E; Zπ^E)) © Ki for all i, where Kt are the homology modules of
the mapping cone of /. Π

Our main results in [34] and in the present paper actually
characterize the kernel modules {Kτ), of the complementary map of
realizations of a Poincare imbedding and the Poincare imbeddings
are required to be regular.

Here are some examples of Poincare imbeddings and their reali-
zations:

EXAMPLE 7.5 (Classical Knots). Let θt = (S1 x Dm+1, ξ, h) be the
Poincare imbedding defined by the standard inclusion of spheres
i: Sm -> Sm+2. It is well-known that all imbeddings of Sm in Sm+2

are normal realizations of θ,.*i

EXAMPLE 7.6 (Local Knots). Let T(ξ) be the total space of the
unit disk bundle associated to a 2-plane bundle ξ over a manifold
Mm, and let z: M—> T(ξ) be the inclusion as zero-section. Then
Cappell and Shaneson show, in [7] that all locally-flat imbeddings of
M in T(ξ) homotopic to z are normal realizations of the Poincare
imbedding θz = (S(ξ) x /, ξ, h) defined by z, where S(ξ) is the unit
circle bundle associated to ξ.

EXAMPLE 7.7 (Parametrized Knots). Let / : SnxMm -^ Sn+2xMm

denote the imbedding i x 1, where i is the standard inclusion of
Sn in Sn+2. Imbeddings homotopic to / where first studied by
Cappell and Shaneson in [7] in the case where M is simply-connected
and closed. The general case was studied by Ocken in his thesis
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[19] under the additional assumptions that the imbedding is homo-
topic to i x 1 relative to Sn x 3M. They showed that all imbedd-
ings of this type are normal realizations of the Poincare imbedding
θf = {Dn+ι x Mx S\ ζ, h), where ξ is a trivial bundle.

Before we can state an example for knotted lens spaces we
must discuss some of the algebraic invariants of homotopy lens
spaces. Let n be an odd integer and let Rn be the ring of algebraic
integers in a cyclotomic field generated by a primitive nth root of
unity, τ, (which will be fixed for the remainder of this discussion).
If L2*"1 is a homotopy lens space of index n, Δ(L) will denote its
Reidemeister torsion (see [40] for a definition) and d{L) e Zn will
denote its image in J*/JΛ

fc+1, where In is the principal ideal of Rn

generated by τ - 1; see [40], p. 205 for a proof that Γn\I^Λ = Zn.
Theorem 14E.3 on p. 207 of [40] proves that d(L) determines the
homotopy type of L in a given dimension and Δ(L) determines its
simple homotopy type. The exact sequence on p. 32 of [18] shows
that Wh(Zn) is isomorphic to the quotient of the subgroup of the
group of units of Rn mapping to 1 under /: Rn —-> RJIn = Zn by the
subgroup of nth roots of unity, i.e., the Reidemeister torsion of a
complex that is acyclic over Z[Zn] will be a unit of Rn. We will
usually regard elements of Wh(Zn) as multiples of units of Rn by
arbitrary nth roots of unity.

Our main result is:

EXAMPLE 7.8 (Knotted Lens Spaces). Let Lf'1 and Lf+1 be
homotopy lens spaces of index n, i.e., quotients of spheres by free
Z^-actions, and suppose there exists a locally-flat imbedding of Lγ

in L2. Then all locally-flat imbeddings of Lx in L2 are normal reali-
zations of the #-Poincare imbedding θι = (S1 x D2k, ς, h), where
g - Δ{L^τά - l)A{L,y\ d-d{Lλ) = d(L2)(mod n), and ξ is the 2-disk
bundle over LL with Euler class e with ed = l(mod^).

REMARK. The discussion on p. 205 of [40] implies that the
d-invariant of a homotopy lens space is always a unit of Zn so that
e and d are well-defined.

See § 9 of [7] and 1.9 of [34] for proofs.

We will conclude this section by defining some important geo-
metric concepts used in classifying codimension-two imbeddings:

DEFINITION 7.9. Two imbeddings of compact manifolds, j\\ Mm~>
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Vm+\ i = 1, 2, are said to be:
A. conjugate if there exist homeomorphisms ht: Λf —> M and

ft2: V -> V both pseudo-isotopic to the identity, such that h2°f2 =

B. concordant if there exists an imbedding F: M x I —>V x I
with JP(ΛΓ x 37) c F x 37, and such that F \ M x 0 = fx and F | M x

C. cobordant if they are conjugate to concordant imbeddings. •

This is essentially the usual geometric definition of cobordism
of imbeddings (through in the case of parametrized knots it is
somewhat stronger than the definition given by Cappell and Shaneson
in [7] or by Ocken in [19]). In the framework of Poincare imbedd-
ings used in the present paper, however, we will need a stronger
definition:

DEFINITION 7.10. Two realizations fi9 i = 0, 1, of Θ will be said
to be:

1. θ-concordant if there exists a realization, F, of the Poincare
imbedding θ x 7 = (E x 7, ξ x 7, h x 7) of M x I into V x I such
that F\Mx {i} and the restriction of the complementary map of F
to M x {i} agrees with the complementary map of fi9 i = 0, 1;

2. θ-cobordant if they are conjugate to ^-concordant realizations
of θ. Π

The set of #-cobordism classes of normal realizations of θ will
be denoted by C(0).

REMARKS. The papers cited in this section prove that, for the
Examples 7.5-7.8 of Poincare imbeddings, ^-cobordism is equivalent
to ordinary cobordism (defined in 7.9). In addition, obstruction
theory and the definition of a normal realization of a Poincare
imbedding imply that:

PROPOSITION 7.11. Suppose a meridian class in πJJS) acts
trivially on {πt(E)} for 2 ^ i ^ m + 3, so that the action factors
through πί{V)f where θ = (E9 ξ, h) is a Poincare imbedding of Mm

into Vm+2, M and V being compact manifolds. If the map
H\E9 S(ξ); πt(E)) -> H\V\ πt(E))9 2 ^ i ^ m + 2, induced by collaps-
ing T(ξ) and excision, is injective, then θ-cobordism is equivalent
to cobordism. •

8* Dual surgery theory and codimension-two imbeddings*
In this section we 'will use dual surgery theory to study the com-
plementary homology of simple realizations of a Poincare imbedding.
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These realizations are similar to simple knots—their complementary
maps are highly-connected. We will use ideas first applied by
Cappell and Shaneson to the codimension-two splitting problem and
to the study of invariant spheres under finite cyclic group actions
in [7].

Throughout this section and the next the following conventions
will be in effect:

8.1. 1. As in the preceding section, θ = (E, ξ, h) will denote
a Poincare imbedding of Mm into Vm+2

9 where M and V are com-
pact manifolds and θ is induced by an actual imbedding that carries
the boundary of M transversly to that of V;

2. g: Zπ1(E)-^Zπ1(E\Jsιξ) T(ξ)) = Zπλ{V) is the map induced
by inclusion;

3. θ is regular—see the remarks following 7.1;
4. the underlying map of θ induces an isomorphism of funda-

mental groups and a surjection of π2—this implies that 7Ct(E) — Gθ

as defined in remark 7 following 7.1, and that the kernel of the
homomorphism of fundamental groups inducing f$ above is the
cyclic subgroup Cθ.

DEFINITION 8.2. A realization of θ will be called simple if its
complementary map is [(m + l)/2]-connected. •

REMARK. Lemma 5.1 implies that every realization of θ is
concordant to a simple realization if m ̂  3 and dV — 0 or m ̂  4.

PROPOSITION 8.3. Let c: E' —> E be the complementary map of
a normal realization of θ and suppose m ̂  3 if dV = φ, ^ 4
otherwise. Then c is normally cobordant {though not necessarily
rel S(ξ)) to the identity map of E.

Proof. Consider t h e map c\Jl:E' UswΆξ) -* E \Jsm T(ξ) = V.

By the definition of a normal realization of θ, this map is s-cobordant
to the identity map of V. Let G: (W; V, E' \JS{ξ) T(ξ)) -> V be an
s-cobordism. The s-cobordism theorem implies that there exists a
homeomorphism F: V x / —> W whose restriction to V x 0 is the
identity map and if / = F\ V x 1, we get a homotopy G<>F: VxI->
V between (c U 1)°/ and the identity map of V. This map can be
made transversal to MaV (this is the imbedding that defines θ)
without altering it on V x dl— assume this done and let Q —
(GoF)-\M). This will be a (locally flat) submanifold of V x I. If
R is a regular neighborhood of Q, we may assume that RΓ\(VxdI) =
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F-χT(ξ) x 31), where T(ξ) x 0 is a tubular neighborhood of the
imbedding of M in V that defines θ. Then G: W - F{R) - ^ £ i s a
normal cobordism between c and the identity map of E. •

Let Ω denote the following diagram:

Zπ,{E)

REMARK. Note that, under the assumptions in effect in this
section, the inclusion of S(ξ) in E induces an isomorphism of funda-
mental groups, by 1.1 in [33].

The following result relates the methods of Cappell and Shaneson
in [7] (particularly Theorem 3.3) to dual surgery theory:

PROPOSITION 8.4. Suppose that m ^ 5 if dV = φ, or ^4 other-
wise. Let c: (E\ S(ξ)) —> (E, S(ξ)) be the complementary map of a
normal realization of θ and let Fc: (W; E, E') —• E x / be a normal
cobordism of c rel dV to the identity map of E (use a Morse
function on the cobordism constructed in 8.3 to get a mapping to
E x /). Then:

1. the homology surgery obstruction of Fc rel dV x / U E U E'
is the same as the homology surgery obstruction rel E';

2. the homology surgery obstruction of Fc rel Ef is the image
of the dual surgery obstruction of c under the isomorphism
h: Ds

m+2($) —» Γs

m+Z(Ω) defined in the discussion preceding 4.3 and in
Appendix A.

Proof Statement 1 is an immediate consequence of the algebraic
description of relative homology surgery theory given in Appendix
A and the fact that Fc\dV x IU E is a simple homotopy equivalence
(i.e., taking the obstruction r e l d F x I\JE\JE' merely means that
we have to collapse the quadratic invariant of this part of the
boundary—but the quadratic invarient of dV x IΌ E is simply
contractible so collapsing it does not alter the simple homotopy
type of the final quadratic pair that represents the obstruction in

Statement 2 follows from the discussion preceding 4.3 and a
bordism-theoretic description of homology surgery obstructions like
that given in Chapter 9 of [40]. In this description two surgery
problems have the same surgery obstruction if there exist simul-
taneous normal cobordisms of their domain and range (see Theorem
9.3 in [40]). The conclusion follows upon observing that, for Δ
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sufficiently small, F~\[l — Δ, 1] x E) is a product neighborhood,
E' x [1 - Δ, 1], of E' in IF. Furthermore E x [1 - Δ, 1] and
ϋ?' x [1 — Δ, 1] are simultaneously normally cobordant rel E and E'
to E x I and IF, respectively (here we use an argument similar to
that used on p. 12 of [40] to show that surgery on the boundary
of a manifold gives a result that is normally cobordant to the
manifold). •

At this point we can complete the argument used by Cappell
and Shaneson in § 10 of [7] to obtain:

THEOREM 8.5. Suppose that m ^ 3 if dV — φ, or ^ 4 otherwise,
and that the image of Ls

m+Z{GΘ) in L^Xπ^V)) acts trivially on
ym+2—see p̂  -Qi oy [4o]. Then a class xeD^+2{%) is the dual
surgery obstruction of the complementary map of a normal realiza-
tion of θ if and only if there exists y e Z4+1(7Γ1(.M)), that acts
trivially on M {see p. I l l of [40]), such that qς{y) = p{x) where:

1. p: Di+2(%) —> L*m+3($) is the homomorphism defined in Remark
3 following 4.3;

2. qξ: Lm+^π^M)) —» Ls

m+3{%) is the homomorphism defined by
inducing degree-1 normal maps over the 2-disk bundle, T(ξ). Π

REMARKS. 1. The homomorphism, qξ, may be described as fol-
lows: If y e Ls

m+1(πj(M)) is the surgery obstruction (rel boundary)
of / : W —> M x /, then qξ(y) is the relative surgery obstruction of
/ ' : (T(/*(£ x I)), S(f*(ξ x !)))-> (Γ(£ x /), S(ξ x /)), where / * de-
notes the pullback.

2. The theorem above, coupled with the results of §§ 5 and 6
makes it possible to characterize the complementary homology of
a simple realization of a Poincare imbedding:

COROLLARY 8.6. Suppose Cθ {see Remark 7 following 7.1) is
infinite cyclic and πx{V) is a finite extension of a poly cyclic group.
Let A = ZGβiS'1] denote the localization defined in the beginning of
§6. Suppose m ^ 3 if dV — 0 or ^ 4 otherwise. If {A%) is a
sequence of ZGθ-modules, 1 ^ i <̂  m + 2 then the {̂ 4J are the com-
plementary homology modules of a simple realization of θ if and
only if either of the following two conditions are satisfied:

1. m = 2k + l, A^HIE; ZGd) for iΦk, and Ak=Hk{E; ZGΘ)® A,
where A is a finitely generated Λ-torsion module that possesses
linking and self-linking forms b and q, respectively, such that the
t-form {A, b, q) represents an element of D£k+1(%) {see §6) that satisfies
the conclusions of the previous theorem;

2. m = 2k, At ^ H^E; ZGβ) for i Φ k - 1, k, and Λ-i =
Hk_λ{E', ZGΘ) 0 A, Ak = Hk{E; ZGΘ) 0 B where A and B are finitely
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generated Λ-torsion modules such that:
(a) A possesses a free resolution of the form

0 >F' >F^>F* >A >0

where (F, λ, μ) is a special ( — l)k-hermitian form with pre-subkernel
(see p. 286 of [7]) equal to imF' (when regarding it as defining an
element of Γs

2k(%)) and such that the element of JD2*(3) represented by
the quadruple (F, λ, μ, im FfcF<&ZGθ Λf) (see the end of §5) satisfies
the conclusions of the preceding theorem)

(b) B = RomZGθ(A,Λ/ZGθ).

Proof. This follows from 8.5, the torsion-theoretic description
of odd-dimensional dual surgery theory in § 6 (especially 6.14), the
description of even-dimensional dual surgery theory at the end of
§5 (and the discussion of the obstructions following 5.11) and 2.14
(and the discussion following it). Statement 2b follows from
Poincare duality and an argument like that used in the proof of
6.5, which shows that ΈlomZGθ(A, Λ/ZGΘ) = ExtZGθ(A, ZGΘ). D

Now we will show that, in many cases, the dual surgery
obstruction of the complementary map of a realization of θ deter-
mines the cobordism class of the realization. First note the follow-
ing proposition:

PROPOSITION 8.7. Let <& denote the identity map of
Then relatίvization induces a natural isomorphism

for all i, where ^ -^% is induced by the inclusion of S(ξ) in E
and V.

Proof. This is a direct consequence of the fact that Dι

s

for all i (see 3.2) and the existence of a long exact sequence

(which is implied by 4.5). •
This implies that:

PROPOSITION 8.8. Taking the dual surgery obstruction of com-
plementary maps of normal realizations of θ gives rise to a well-
defined map t: C(θ) > D^+2(%).

Proof. This follows from the fact that complementary maps
of 0-cobordant normal realizations of θ are homology s-cobordant in
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such a way that the induced cobordism of S(ξ) is an actual s-cobor-
dism. •

THEOREM 8.9. Let m^4, or if S{ζ) = Sm x S1 and dV = 0 let

m ^ 3. Then the map t defined in the preceding proposition, is
injective—i.e., two normal realizations of Θ are θ-cobordant if and
only if their complementary maps have the same dual surgery
obstruction.

REMARKS. 1. This implies that, for many classes of codimension-
two imbeddings, the set of cobordism classes of imbeddings has a
natural group structure.

2. Suppose that TΓ^V) is a finite extension of a polycyclic
group and Cθ is infinite cyclic and that the homology of E, the
complement of θ, is Λ-torsion free (with local coefficients in ZGΘ).
If c: E' —» E is the complementary map of a normal realization of θ
it is not difficult to see that the homomorphism, c*, induced in
homology by c will be that induced by factoring out the Λ -torsion
submodules of the homology modules of E' and that the kernel
modules of c* can be defined without reference to θ.

It follows that we can define simple realizations, in this case,
without reference to θ and if M and V are odd-dimensional we
can extract from the homology of E' an intrinsic and complete
θ'Cobordism invariant, using the results of § 6.

Proof. We will assume, at first, that m Ξ> 4. Let ct: Et —• E,
i = 1, 2 be complementary maps of normal realizations of θ that
have the same dual surgery obstruction. Propositon 8.4 implies
that there exist cobordisms Ft: (Wt; E, Eτ) ->Ex[0, ( —1)*], such that
the relative homology surgery obstructions of the Ft in Γ8

m+3(Ω) are
equal. If we form the union along E we get a cobordism Fx U F2:
(WΊ U W2; Eu E2)-^Ex[ — l, +1] whose homology surgery obstruction
in Γs

m+3(Ω) is zero. It follows that we can perform surgery on
T7iUTF2 rel dV x /U £Ί U E2 to get a homology s-cobordism Fr:
(W';El9 E2)->Ex[ — l, +1] such that the induced cobordism of S(ξ)
is an actual s-cobordism. The conclusion follows from the s-cobordism
theorem, and in the case where m = 3 and S(ξ) = S3 x S1, from
Shaneson's results in [29]. •

9* Knotted lens spaces* In this section we will apply the
methods developed in this paper to codimension-two imbeddings of
homotopy lens spaces. Such imbeddings have been studied before
as invarient knots under a free Z^-action on spheres. Cappell and
Shaneson obtained a cobordism classification of such imbeddings in
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[7] and Stoltzfus showed, in [37], that the cobordism theory of
such imbeddings could be formulated in a manner similar to Levine's
classification of high-dimensional knots in [15] and [16]. Using a
somewhat different approach, we will determine the cobordism
classes of knotted lens spaces as well as their relation to the com-
plementary homology. The results in this section will apply in the
PL-category though many of them can be rephrased in the smooth
and topological categories.

Before we can proceed we must recall some of the invarients
of homotopy lens spaces and their properties. See Chapter 14.E of
[40] for proofs. Throughout this section n will denote an odd
integer and T will denote a preferred generator of Zn.

9.1. A homotopy lens space L2k+1 of index n (i.e., S2k+1/Zn),
and of dimension Ξ>5 is determined up to PL-homeomorphism by
the following invarients {other than n and k):

1. A(L)—the Reidemeister torsion—see 7.8 and the discussion
preceding it;

2. p(L)—this invarient is defined on p. 175 of [40]. It takes
its values in QRn = Q[Zn]/(z), where Zn is the Pontryagin dual of
Zn and (z) is the ideal generated by the sum of the elements of Zn.
QRn is isomorphic, as a ring, to Q(τ).

REMARKS. 1. Throughout this section Xe Zn will denote the
representation of Zn in S1 that maps the preferred generator, Γ,
to exp (2πi/n).

2. Recall, from the discussion preceding 7.8, that ^(L2*-1)
determines the simple homotopy type of L and its image in Ik/Ik+1 =
Zn determines the homotopy type of L.

9.2. An element, x, of the group LJfc+2(Zn) = L2fc+2(0)φLJft+2(Zw)
is completely characterized by:

1. D(x)—this is the Whitehead torsion of the adjoint map of
a hermitian form representing x and is regarded as being a unit
in Rn (see 7.8 and the discussion preceding it);

2. M(x)—this is the multisignature of x—see p. 165 of [40]
for a definition. It takes its values in ARn c QRn, where Rn =

3. c(x) {if k is odd)—this is the Arf invarient, or the signature
(if k is even).

REMARKS. 1. See [1], [2] or [41] for proofs of these statements.
2. Our definition of M(x) is slightly different from that of
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Wall given in Chapter 13A of [40]. In our definition M(x) is the
restriction of Wall's multisignature (which is the character of a
representation of Zn) to Zn — {0}. In the Pontryagin dual ZΛ, this
corresponds to dividing out by the regular representation of Zn so
our multisignature takes its values in Z[Z]/(β) = Rn (and, in fact,
in 4i?J. The definition used in Chapter 14E of [40], however,
corresponds to that given here.

Recall the definition of a suspension of a homotopy lens space
in Chapter 14A of [40]—also see the proof of 1.8 in [34]. The
following result describes the way the invarients described above
interact with each other:

9.3. Let Lx and L2 be homotopy lens spaces of index n and of
dimension 2^3. Then:

1. If diπ^Li) = dim(L2) = 2k + 1, there exists a normal cobor-
dism W between Lγ and L2 if and only if

(a) A(Lλ) = A(L2) (mod/^2)—see the discussion preceding 7.8;
(b) p{L2) - p(LL) = teARnd QRn;

in which case A(L2)- A{L^)~X and t are the Whitehead torsion and
multisignature, respectively, of the surgery obstruction of any
normal cobordism between them that maps to Lx.

2. If L is a suspension of Lx via a free action of Zn on S1

with the preferred generator acting as Xe (see the remark following
9.1) then:

(a) p(L) = piL^l + Z )/(l - Ze);
(b) A{L) = A(L^)(τd — 1), where d-e = 1 (modw) and τ is the

image of T under the isomorphism Z[Zn]/(z) ~~> Rn.

At this point, all that remains to be done before we can state
our main results on knotted lens spaces is to describe the criteria
developed by Cappell and Shaneson in [7] for the existence of
codimension-two imbeddings of homotopy lens spaces:

THEOREM 9.4. Let Llk~\ Lf+1, k ^ 2, be homotopy lens spaces
of index n. Then there exists a locally-flat imbedding of Lx in L2

if and only if L2 is normally cobordant to a suspension of Lly i.e.,
if and only if p(L2) — /θ(Li)(l + Xe)/(1 — ΊCe) = te4Rn, where e-d(L2)~
d(Lλ) (mod n)—see the discussion preceding 7.8.

Proof. This is a direct consequence of Theorem 9.4 in [7].
The condition in that theorem is state slightly differently—it says
that LL must be normally cobordant to a desuspension of L2. The
latter condition is equivalent to the condition that p(L2)(l — Xe)/
(1 + Xe) — p(Lj) e 4Rn, since normal cobordism implies homotopy
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equivalence and Xe defines the only suspension of Lx that can be
homotopy equivalent to L2 (see the proof of 1.9 in [34]). The state-
ment of the theorem then follows from the fact that (1 + Xe)/(1 —#e)
is a unit in Rn. •

Let D%(?§) be the dual surgery obstruction groups defined like
the Dn(%), except that no attention is paid to preferred bases and
Whitehead torsion. In this case we also define a map p: 2>ί(f5) —>
•£ί+i(8)—it k a s essentially the same properties as the map described
in Appendix A.

Throughout the remainder of this section g: Z [Z] —> Z[Zn] will
denote the homomorphism induced by reduction of elements of the
group of integers mod n.

DEFINITION 9.5. If xeD2

h

k+1(%), its signature is defined to be
the image of x in I&+1(Z) = 14(0). D

REMARKS. 1. If & is even the signature is an element of Z and
if k is odd, an element of Z2.

2. Using the results of [24] it is possible to give an explicit
algorithm for the computation of the signature. If x is represented

by the split formation (F, (CVj? OjG)* where 7 and μ are m x m

matrices then choose m x m matrices r' and s' such that the matrix

7 T

μ s

is invertible. The proof of Theorem 1.1 in [23] implies that the
matrix

μ 8

defines an element of SU2m(Z[Z])f where r = r'a — ja*r'*s'a and
s = s'a — μa*rf*sra and a = ( T V + εμV)"1 (the proof of the theorem
cited above in [23] also implies the invertibility of 7 V + sμ*r').

Now Δ is a 2m x 2m matrix that defines an automorphism of
the standard kernel on F($F* and its entries are Laurent poly-
nomials in t (after identifying Z[Z] with Z[ty ί"1]). Let I denote
the largest exponent of t occurring in the entries of Δ. Since the
inverse of Δ is

εμ* 7*.

it follows that I is ^ the parameter N in the definition of B in
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[24]. Let Fo denote the free abelian group on a basis that is the
standard basis of F (over Z[Z]) and let Fo* denote its image under
the adjoint of the bilinear form o n f φ F * . Now define the finitely
generated free abelian group (of rank 2ml)

K = ®P(FQ®FQ*)

and, for x,yeK, set τ(xf y) = [(^(Δx))*-^(Δy)]^ where:

1. 2 denotes the matrix (fί
2. ^ F φ F ^ F φ ί 7 * is the Z-linear map whose restriction

to KaFζ&F* is the identity and which maps t*(F0®F0*)c:F(&F*
to zero if i ^ I;

3. [ ]0 denotes the constant term of a polynomial in t. Then
x is a sesquilinear form on K and:

A. If k is even the signature of x is 1/8 of the signature of
the symmetrization of x;

B. if & is odd the signature of x is the Arf invarient of x
(calculated with respect to a maximal symplectic set for the skew-
symmetrization of x).

If the signature of a formation vanishes, the exact sequence
4.1 implies that it will be stably isomorphic to a split graph for-
mation—see Remark 3 following 5.5.

PROPOSITION 9.6. A split formation x = [E, ((?Λ Θ)G) i s

stably isomorphic to a split graph formation if and only if there
exists a ( — €)Ήermitian kernel {see [40], p. 47) (K2j, a, β) and a
matrix Ω such that det {7 0 I 2 i + (42 —ε£?*)*(μ 0 a)}=±ti for some i.

If this condition is satisfied then x is stably isomorphic to the
split graph formation:

where Ξ = j*μ 0 α* + (μ* 0 α*)(42 - εΩ*)(μ 0 a) and

' a*)Ω(μ 0 a) .

REMARKS. 1. IiS denotes the identity matrix with 2j rows and
β actually denotes a 2j x 2j matrix such that a — β ~ εβ*.

2. If ajeAWδ) k a s signature zero then x will be represented
by a split formation that satisfies the hypothesis of the proposition
above. In this case we will define the multisignature of x to
be the multisignature of the ( —l)fc+1-Hermitian bilinear form
(F, Ξ) ®zm Z[Zn] as defined on p. 165 of [40].
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Proof. This is a direct consequence of the definition of an
isomorphism of split formations (5.3) with 7' = 1. •

We are now in a position to state the main result of this
section:

THEOREM 9.7. Let L\k~\ Lf+1 be homotopy lens spaces, k ^ 3,
of index n and suppose there exists an imbedding of L1 in L2.
Then an element x e D2k+ι{%) ^s ^ e dual surgery obstruction of the
complementary map of a normal realization of the Poincare imbed-
ding θι defined in 7.8 if and only if:

1. x has a signature equal to j - n for some integer j ;
2. the multisignature of x — j'*S$ζk+hn is equal to

p(L2) - piLdil + *e)/(l - *e) ,

where e-d(L2) = d(Lλ) (mod ri);
3. the Reidemeister torsion of x is t = A(L^)(τd — l)Ά(L2)~ι,

where e-d = 1 (modw).
Furthermore, two such imbeddings are cobordant if and only

if the dual surgery obstructions of their complementary maps are
equal.

REMARKS. 1. In the case k — 2, Rokhlin's theorem implies that
the signature of x must be a multiple of 2n.

2. See Appendix B for a definition of the elements J^fc+1,w 6

Ai+i(δ).

3. The Reidemeister torsion of an element of D2

h

h(%) represented

by a split formation (F, (CΛf

 Θ)G) i s defined to be det(μ)(τ).

Proof. The proof of this theorem is very similar to that of
8.5 so that we will only indicate the differences. First, instead of
L2 being s-cobordant to the identity map of the suspension of L^
with invariant le we only know that L2 is normally cobordant to
it (by 9.4) and that the surgery obstruction of any normal cobor-
dism has multisignature p(L2) — piL^il + Xe)/(1 — le) and Whitehead
torsion t. The remainder of the proof of 8.5 implies that x can be
the dual surgery obstruction of the complementary map of a normal
realization of θx if and only if p(x) — qξ(y) + B, where y e L2k(Zn)
acts trivially on Lx and B L2k+2(%) is the image of the surgery
obstruction of a normal cobordism between L2 and the suspension
of L1 with invariant Xe. The theorem now follows from the fact
that the subgroup of L2k(Zn) that acts trivially on Lγ is precisely
L2k(0) and from the results in Appendix B. Π
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Let Λ = Z[Z] and A = ^[S"1], where S is the multiplicatively
closed set of all Laurent polynomials with augmentation ± 1 whose
exponents are all multiples of n.

DEFINITION 9.8. Let u = ΣΓ~1 ) / 2 2ai(V + εZ-<) e Rn and AeRnhe
such that sign {W{A)) = ( — l)α*. Then Jέfe(u, A) denotes a special ε-
Hermitian form {F, λ, μ) with multisignature % and Reidemeister
torsion A, and g^£(u, A) denotes the associated graph form—i.e., a
ί-form representing the image of £?s{u, A) in L2k+2{%) (see B.I in
Appendix B). •

REMARK. The existence of Jzfjji, A) follows from 13A.5 in [40].
Its class as an element of Llk{Zn) is clearly uniquely determined by
u and A.

THEOREM 9.9. Let Lf~\ Lf+1 be homotopy lens spaces k ^ 3, of
index n and suppose there exists a locally-flat imbedding of Lλ in
L2. Then a A-module, T, can be the middle-dimensional homology
module of the complement of a simple imbedding of Lx in L2 if and
only if T is a finitely generated A-torsion module with a short
free resolution and such that there exists an isomorphism b: T —>
Homj (T, AI A) with the following properties:

1. there exists a self-linking form q: T-+Λk {see 6.7) compatible
with b so that the triple (T, b, q) constitutes a t-form defining an
element of D2

h

k+1($);
2. there exist %-trivial graph forms Giy i — 1, 2, {see B.I in

Appendix B) such that {T, b, q)(&G1 is isometric to G2φ^£{u, A) φ
3 &2k+u* where:

(a) j is some integer and ε = ( — l)k;
(b) u = p{L2) - ρ{L,){l + Ze)/(1 - Ze), e d{L2) = diL^moά n);
(c) A = A{Lx){τd - l)A{L2)-\ e d = l{moάn). •

REMARKS 1. See Appendix B for a definition of the ί-form

2. Statement 2c is equivalent to the statement that the
Alexander polynomial (see [34]) of T evaluated at a primative wth
root of unity is A (given above) times some wth root of unity.

3. If L2 is a suspension of Lι the statement of the theorem
above is valid with &B(u, A) and statements 2(b) and (c) omitted.

4. The g-trivial graph forms Gi9 i = 1,2, must define elements

of Afc+i(S)—i e., they must be simple.

APPENDIX A. The homomorphism p: Di(%) ->I/J+1(g). In this
appendix we will give an algebraic description of relative homology
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surgery obstructions and the map p: Di(%) —> Γs

n+1(Φ) defined in § 4,
where § and Φ are the diagrams:

A

i CV i

and all of the conventions at the beginning of Chapter I are in
effect.

We begin by recalling Ranicki's definition of a quadratic triad
in § 10 of [25]:

DEFINITION A.I. Let Ξ denote the following commutative square
of /(-chain complexes:

and define a Λ-chain complex, C(Ξ), by

dc, (-ly^g (-D 0

o dD o (-1)7

o o dB. (-1)7'
0 0 0 dc

Then the homology groups of the diagram, B, are defined by Ht(B) =

DEFINITION A.2. Given a commutative square, B, of chain
complexes let B* ® Λ Ξ denote the commutative square of Z[Z2]-chain
complexes

with TeZ2 acting by the ε-transposition Tε, and define the hyper-
homology groups Qn(B, ε) = Hn(Z2, C(Ξ'&AΞ)). •
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REMARK. An element (δB, δφ, δψ'f ψ) e Qn+2(Ξ, ε) is represented
by a collection of chains

K, f „) 6 ' ) M + 8 θ (D*

such that

.) + (-1)—+1

+ (-
= 0

(-1)—

(-1) = 0

= 0

for all s ^ 0.
(Compare this with the definitions at the beginning of § 2.)

DEFINITION A.3. An (n + 2)-dimensional quadratic triad, (Ξ, P)
is a commutative square

ΞA „, Is

of J-chain complexes such that C is ^-dimensional, D and D' are
(w + l)-dimensional and C is (n + 2)-dimensional, together with an
element P = (δS, δψ, δψf

f ψ) e Qn+2(Ξ, e). Such a triad is Poincare if
the (w + l)-dimensional quadratic pairs (/: C-+D, (δψ, ψ)) and (/':
C—*D'9(δφ'fφ)) are Poincare (in which case, (C, ψ) is a Poincare
complex) and such that the chain map (1 + Tε)P0: C'n+2~* -> C*(Ξ)
defined by

(1 + Te)P0 =
Ts)δf ΰff*

(-l)-'(l

0

. rit C(Ξ)

— ^ ί vI7 J-Ji—\ \L? •L/i=i \±P JLJ%-2

is a simple chain equivalence.

Now we are in a position to give an algebraic-surgery-theoretic
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definition of the groups Γs

n+1(Φ):

PROPOSITION A.4. The relative homology surgery groups, Γs

n+1(Φ),
are grothendiek groups of equivalence classes of (n + l)-dimensional
quadratic pairs x = (f:C —> D, (δψ, ψ)) such that the n-dimensional
quadratic complex, (C, ψ) is Poincare and the tensor product of x
with A' satisfies relative Poincare duality and two such pairs xt =
(ft- Ct —> Dif (δψi9 ψt))9 i — 1, 2, are equivalent if and only if there
exists an (n + 2)-dimensional quadratic triad, (Ξ, P) with:

Ξ the diagram Cx 0 C2 ——> W

AθA—>V

and P = (δΞ, δψw, S^ 0 — δψ2, ψλ 0 — ψ2), and such that (rx 0 r2:
C Ί 0 C 2 ^ W , (δψw, ^ 0 — ψ2)) is Poincare and the tensor product
of (Ξ, P) with Λr is a Poincare triad over Λ'. •

REMARKS. 1. The fact that every quadratic pair is equivalent
to itself [implies that the inverse of (/: (C -> D, (δψ, ψ))) is (/: C —>
D, ( — δψ, — ψ)) so that every element of Γs

n+1(Φ) has a representa-
tive that is an actual quadratic pair rather than just a formal
difference of two such pairs.

2. Repeated application of Proposition 2.15 implies that a
quadratic pair (/: C -+ Df (δψ, ψ)) represents the zero element of
Γs

n+1(Φ) if and only if it is possible to perform surgery on C to
render it acyclic and on D to render it relatively acyclic.

3. Suppose F: (Nn+1; M_, M+) -> (Γ; X_, X+) is a relative homo-
logy surgery problem with n ^ 5, and with coefficients in Φ, and
suppose F\M_ is a simple Λ'-homology equivalence. In order to
determine the relative homology surgery obstruction of F rel M_
in Γs

n+1(Φ) we must first compute the relative quadratic signature
of F— suppose this is (Cx φ C 2 - ^ f l , (δψ, ψ± 0 ψ2)), where (Clf ψλ) is
the quadratic signature of F\M+ and (C2, ψ2) is the quadratic
signature of F\M_—then collapse the relatively acyclic components
of the boundary that we want to remain fixed throughout surgery—
in this case (C2, ψ2)—and then regard the resulting g-Poincare pair
as defining an element of Γ8

n+1(Φ). This follows upon comparing A.4
with the bordism-theoretic definition of Γs

n+1(Φ) given in [7] and
using Remark 2 above.

One consequence of this is:

COROLLARY A.5. The isomorphism i: D^(%) -»Γs

n+1(Φ) carries the
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element represented by the relatively acyclic n-dimensional Poincare
complex (C, ψ) to the class of the (n + l)-dimensional %-Poincare
pair (0:C->0, (0, ψ)) in Π+1(Φ).

Proof. This follows from the geometric definition of the map
i—i.e., if the quadratic signature of f:Mm-^X is (C, <f) we form
the product with a unit interval and measure the homology surgery-
obstruction rel M x 0. The algebraic analogue of this is forming
the algebraic mapping cylinder of the identity map of (C, ψ) in the
boundary. The result is clearly simple homotopy equivalent (as a
pair) to (0:C->0, (0, ψ)). •

REMARK. At this point we could give a purely algebraic proof
of Theorem 4.3.

In order to study the map p: Di(%) —> L°n+1(%), defined in the
third remark following Theorem 4.3 we must recall Ranicki's des-
cription of relative Wall groups:

DEFINITION A.6. The relative Wall group, Ls

n+1($), is the
Grothendiek group of the semigroup of equivalence classes of triples
((C, φ), (A ψ')9 h) where (C, ψ) is an ^-dimensional Poincare complex
over A and h is a simple homotopy equivalence h: (C, ψ) (ξ$Λ A' —>
d(D, ψ') and two such triples, {{Cu φt), (Dtf ψ[)9 hτ), i = 1, 2, are
equivalent if and only if

1. there exists an (n + l)-dimensional quadratic complex (E, ψ")
over A and a simple homotopy equivalence s: d(E, ψ") —> (Clf — Ψ Ί ) ©
(C2, ψ2);

2. there exists an (w + 2)-dimensional quadratic complex (F, ψ")
over A! and a simple homotopy equivalence

t: {(E, ψ") ® A'} U {(A, Ψ.) Θ (A, ft)} > d(F, r) D

(See § 10 of [25] for a proof that this is equivalent to the usual
definition.)

A comparison of this description of relative Wall groups with
the usual bordism-theoretic one in Chapter 9 of [40] implies that:

COROLLARY A.7. 1. The homomorphism p: Γs

n+1(Φ)-> Ls

nΛ1($)f

defined in [7] carries the element of Γs

n+1(Φ) represented by the
^-Poincare pair x = (/: C —> A (βψ9 ψ)) to the class of the triple
((C, ψ), ((£(# 0 A'))9 h)—see the discussion following 2.12.

2. The homomorphism p: AK3) —• Ls

n+1(%) carries the element
represented by the relatively acyclic n-dimensional Poincare (C, ψ)
to the class of the triple ((C, ψ), (0, 0), 0). •
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APPENDIX B. The composite L2k(0)-*L2k(Zn)->L2k+2(%). Through-
out this appendix n will denote an odd integer and %: Z[Z] —> Z[Zn]
will denote the map induced by reduction of group elements of Z
mod n. In this appendix a ί-form will be determined that represents
the image of the generator of L2k(0) c L2k(Zn) in L2k+2($) under the
map defined in § 8.

PROPOSITION B.I. The relative Wall group Le

lk+2(%), where e = s
or h, is isomorphic to the quotient D2k+1($)/J where J is the subgroup
generated by t-forms (M, 6, q) satisfying the conditions:

(a) there exists a special (k + l)Ήermitian form (F, λ, μ)
defining an element of Γ2k+2(%) that maps to 0 under the map
p: ΓhU%)-^ L<2k+2(Zn);

(b) M = coker (ad λ: F -> ί 7*);
(c) 6: M-*Md maps [y] to ([x]->x(z)/8);
(d) q: M->Άk maps [y] to (l/s)μ(z)(l!s)

where x, yeF*, and seS, zeF are such that ys = (adλ)(#).

REMARKS. 1. A ί-form representing an element of the subgroup
J will be called an %-trivial graph form.

2. The map p: D2k+ι(%) —> L2fc+2(S) is just projection to the
quotient, with the interpretation of Le

2k+2(%) given above.

Proof. This follows from the diagram in Remark 3 following
4.3, the fact that p: Γe

n(%) -> Lβ

n(Zn) is surjective in even dimensions
and injective in odd dimensions, the 5-Lemma and the relation
between formations on ί-forms following 6.9. •

We are now ready to proceed. We will consider the case where
k is even. The generator 1 6 L8(0) is represented by the sesquilinear
form

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

where S + Str is the Milnor matrix. This bilinear form is repre-
sented geometrically by the Milnor manifold
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Consider the surgery problem

F: U x l ί U r 8 > U x I%Ό8

where U is some 7-dimensional lens space of index n (i.e., π^U) =
Zn) and F is the identity map on U x I and the map on ^£8 whose
surgery obstruction is leLQ(Zn) (the connected sum is taken on
U x (0, 1)). Let dB denote the total space of the nontrivial
SMbundle, η, on U and B denote the corresponding D2-bundle.
Then pulling this bundle back over F gives rise to the surgery
problem:

J ^ : W >{B,dB) x / .

Let V denote the quadratic signature of the surgery problem
g: ^ # 8 —> D8: σ(g) = (F*, ψ) where Vt — 0 unless i = 4 in which case
V4 = Z8 and ψ0 = S: V4 -> F4. Since the restriction of the bundle
^ to ^ 8 is trivial (because ^ 8 is 4-connected) it follows that the
quadratic signature of ^ | ^ # 8 x S1 is (F, ψ) (x^OS1), where
<7*(S1) denotes the symmetric signature of S1 given in § 14 of [25]
by (C*, ̂ ) where:

C< = 0 unless i = 0, 1

Co = Cx

and

d - 1 - z: d > Co, d* = 1 - g-1: C° > C1 .

fl: C1 >C0

B.2. φ0 = ? 1 = 1: C1 > Cx .
U-1: C° • d

The tensor product formulae in § 11 of [25], the fact that the
only nontrivial contribution to the surgery obstruction of J^ comes
from the restriction of η to ^ 8 , the fact that the generator of
the fundamental group of a fiber of η maps to n x (a generator of
the fundamental group of dB) imply that:

THEOREM B.3. qζ(l) e L10(Z-^Zn) is represented by ((C, ψ), φ, 0), h)
(in the notation of A.6) where:

(a) Ci = 0 unless i — 4, 5;
(b) C , = C5 = Z [ Z ] 8 ,

(2 = 1 - ί : C6 -* C o d* = 1 - ί- : C4 -> C5;
(S: C 5 -* C4

( c ) * ^ 0



480 JUSTIN R. SMITH

(d) A = 0 unless i = 4;

(e) Λ
(f) Λ = l : D

COROLLARY B.4. The element qξ(ϊ)eLlQ(Z-+ZJ, constructed in
B.3 is represented by {{Et μ), (0, 0), 0) where:

(a) 22, = 0 unless i — 4, 5;
(b) E, = Eδ = Z[Z]\ d = S + tnStr: Eh — # 4 ;

(c) Λ =

REMARK. Note that E(&zmZ[Zn} is acyclic so that (.£,/*)
defines an element of A*+i(§) that maps to ?{(1) under the map

Proof. We begin by performing algebraic surgery on (C, <ψ<) via
(a) /, = 1: CJ-*F = Z[Z]\
(b) /4 = 0: Ct -> 0, i * 5.

The result is (G, ψ') where:
(a) Gi = 0, iΦ4, 5;
(b) G( = C , φ F , G6 = C 6 0 F *

d =

(c)

p
L-

ΓO
o

—

0

s
0

—

1

? 0"

1

0 "

0 _

ί S"
0

1 - ί" S + tnS(

0

: G4

: G5

: G4

(see 2.14) and this can easily be seen to be chain-homotopy equi-
valent to (E, μ) via the chain-map:

m6 = (0 1): G6 > Et = Z[Z]'

mt = (1 1 - t ): G4 * JE"4

and m, = 0 if i Φ 4, 5.
In order to show that ((E, μ), (0, 0), 0) defines the same element

of I&+2(δ) as ((C, ψ), {D, 0), h) it is necessary to show that the
Poincare complex

B.5. {(T, o) ® z[zn]} u (A 0)
Z[Z] A
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is null-cobordant, i.e., is the boundary of a higher-dimensional
quadratic complex (see A.6), where (T, 0) is the trace of the
algebraic surgery performed above on (C, ψ). This is given by the
proof of Proposition 7.1 in [25] and is:

Tt = 0 i Φ 4, 5
f*

4 — ^ 4

d = (1 - t" S): Tb > T4

and the inclusions of the boundaries (C, ψ)f {E, μ) are given by

1
(a) C4

rp

4 — i 4

(b) < = Γ4,

Direct computation, using the union construction (2.5) shows
that the union, B.5, is acyclic and so, certainly null-cobordant. •

The case where k is odd proceeds via a similar argument except

that we begin with the sesquilinear form ί Z 0 Z , (Q Λ\ rather

than (Z\ S) and the process of taking the dual of a map is different

since the parameter, ε, is now equal to —1. The result, in this

case, is (Off, β), (0, 0), 0) where
(a) Ht = 0 i Φ 3, 4;

(b)
t — 1 . JπL —

0: H< >HZ

1 01
β1 = (1 - Γ)

L
The results of this appendix can be summarized as follows:

l l j

THEOREM B.6. Elements of D2

h

k+1(%) mapping to q((ϊ) under
p: Dik+ι(%) —> Xί2fc+2@) a r e given by (A) the split formations

( i ) (k odd)

Z[Z)\
0

1

0

1 -

ί~" - 1 ί- - 1

0 ί"M - 1

\

z[zγ
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(ii) (k even)

(z[zγ,

(B) the t-forms &2k+i,« = (M, b, g) where:
( i ) if k is odd

M = coker : Z[ZY > Z[ZY
1 1 - ί" J

i-tr It- - 1 -ί-w

-(3 - tn - t~n)x* x
?([a;])

(tn + ί~% - I ) 2

(ii) and if k is even

M = coker (S + ΓS ί r): Z[Z]* > Z[Z]8

b([x], [y]) = (1 - ί-w)x*(ί-wS + S'T'V

q([x]) = - ( 1 + t*)x*{SStr + S*'S + tn(S2)tr + ̂ -%S2}-^ . Π

REMARK. Notice that the Reidemeister torsion of these ί-forms
(calculated by setting t equal to a primative nth. root of unity in
the matrices defining M and computing the determinant) is zero
(i.e., a trivial unit in the group of units of Z[τ], where τ is a
primative wth root of unity). This implies that the ί-forms con-
structed above are lifts of qς(ΐ) e Le

2k+2(%) to D2

e

k+1(%) for e equal to
either s or h.
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