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Introduction
I The Alexander-Whitney coproduct is functorial with

respect to simplicial maps.

I If X is a simplicial set, C(X ) is the unnormalized
chain-complex and RS2 is the bar-resolution of Z2, it is
also well-known that there is a unique homotopy class
of Z2-equivariant maps (where Z2 transposes the
factors of the target)

ξX :RS2 ⊗C(X )→ C(X )⊗C(X )

and that this extends the Alexander-Whitney
diagonal.

I In his construction of cup-i products, Steenrod
defined a dual of this map.
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We can make this functorial too, so any simplicial map

f :X → Y

induces a commutative diagram

RS2 ⊗C(X )
1⊗C(f )

//

ξX
��

RS2 ⊗C(Y )

ξY
��

C(X )⊗C(X )
C(f )⊗C(f )

// C(Y )⊗C(Y )

Justin Smith Drexel University
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Natural question
I Given a purely algebraically-defined chain-map

g:C(X )→ C(Y )

I that makes the diagram

RS2 ⊗C(X )
1⊗g

//

ξX
��

RS2 ⊗C(Y )

ξY
��

C(X )⊗C(X )
g⊗g

// C(Y )⊗C(Y )

commute

I What can we say about X and Y?

Justin Smith Drexel University
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It turns out (with many qualifications) that such a
chain-map induces a simplicial map

g∞:Z∞X → Z∞Y

of Z-completions “strongly related to g”

Justin Smith Drexel University
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More precise statement
In [7], I prove that if X and Y are pointed, reduced,
degeneracy-free simplicial sets and g:N(X )→ N(Y ) is a
chain-map of normalized chain-complexes that preserves
the Steenrod diagonals, then there exists a simplicial map

g∞:Z∞X → Z∞Y

that makes the diagram

X

φX
��

Y

φY
��

Z∞X
g∞

//

qX
��

Z∞Y

qY
��

Z̃X
Γ̃g

// Z̃Y

commute.Justin Smith Drexel University

Steenrod Coalgebras
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Here:
I φX , φY are natural maps and (if the spaces X and Y

are Z-good) integral homology equivalences. This
happens if X and Y are nilpotent, for instance.

I Γ̃g is the induced map of pointed versions of the
Dold-Kan functor

I If g is a homology equivalence, so is g∞.

I The work ([3]) of Rourke and Sanderson shows that all
simplicial sets are canonically homotopy equivalent
to degeneracy-free ones.

Justin Smith Drexel University
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Consequences

I If g is a homology equivalence and X and Y are
nilpotent, then they are homotopy equivalent.

I The Steenrod diagonal, originally used to define
Steenrod squares, actually determines all Steenrod
operations.

Justin Smith Drexel University
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Simple example
I Let X be a simplicial set with functorial higher

diagonal

h:RS2 ⊗C(X )→ C(X )⊗C(X )

I Let ∆ = h([ ]⊗ ∗):C(X )→ C(X )⊗C(X ) — the
Alexander-Whitney diagonal

I Let ∆2 = h([(1, 2)]⊗ ∗):C(X )→ C(X )⊗C(X ).

I Then

∂{(1⊗ ∆) ◦ ∆2} = (1⊗ ∆) ◦ ∂∆2

= (1⊗ ∆) ◦ {(1, 2)− 1}∆
= (1, 2, 3)(∆⊗ 1) ◦ ∆− (1⊗ ∆) ◦ ∆
= {(1, 2, 3)− 1}(1⊗ ∆) ◦ ∆

Justin Smith Drexel University

Steenrod Coalgebras
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History

I In [4], Smirnov asserted that the integral homotopy
type of a space is determined by a
coalgebra-structure on its singular chain-complex
over an E∞-operad.

I Smirnov’s proof was somewhat opaque and the
community still has not assimilated it.

I Although some even questioned the result’s validity,
the work discussed here appears to vindicate it.

Justin Smith Drexel University
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History

I In [6], the author showed that the chain-complex of a
space was naturally a coalgebra over an E∞-operad
S and that this could be used to iterate the cobar
construction (in a paper that was also opaque and
unassimilated).

I The paper [5] applied those results to show that this
S-coalgebra determined the integral homotopy type
of a simply-connected space.

Justin Smith Drexel University

Steenrod Coalgebras
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History

I In [1]1, Mandell showed that the mod-p cochain
complex of a p-nilpotent space had a algebra
structure over an operad that determined the
space’s p-type.

I In [2], Mandell showed that the cochains of a
nilpotent space whose homotopy groups are all finite
have an algebra structure over an operad that
determined its integral homotopy type.

1Based on Mandell’s 1997 thesis.
Justin Smith Drexel University
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I We begin by recalling concepts so old they might
seem new. . .

I Let sAB denote the category of simplicial abelian
groups and Ch, that of chain complexes. We have
inverse functors

N̂: sAB→ Ch
Γ:Ch→ sAB

N̂(A) = A/D(A) — the subgroup generated by
degenerate simplices and

I the Dold-Kan functor:

ΓCn =
⊕

n�m
Cm

—

Justin Smith Drexel University
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I If X is a simplicial set, let ZX denote the free simplicial
abelian group generated by X , with a pointed version
Z̃X = ZX/Z∗.

I There is a well-known (unnatural) homotopy
equivalence

ZX → ∏
n≥0

K (Hn(X ),n)

I and the Hurewicz map

hX :X → ZX

x 7→ 1 · x

Justin Smith Drexel University

Steenrod Coalgebras
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I If X is a simplicial set

N(X ) = N̂ZX

and

I

ΓN(X ) = ZX

Justin Smith Drexel University
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The Hurewicz map is so-named because it induces the
Hurewicz homomorphism in homotopy groups

πn(hX ):πn(X )→ πn(ZX ) = Hn(X ,Z)

It is used to define the cosimplicial Z-resolution, Z•X , of X :

Z̃X
∂i

→→ Z̃2X → · · ·

where the coface maps are defined by ∂i = Z̃n−i+1 ◦ h∗
Z̃iX ,

i = 0, . . . ,n.

Justin Smith Drexel University
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I The total space is given by

(Z∞X )n = hom(∆n × ∆•,Z•X )

I where ∆• is the standard cosimplex and the hom is
the set of simplicial maps commuting with all cofaces
and codegeneracies

Justin Smith Drexel University
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I Property of Z∞X :

I If X is degeneracy free, Z∞X is determined by Z̃X or
N(X ) and

I the chain-map induced by the Hurewicz map

N(h):N(X )→ N(Z̃X )

Justin Smith Drexel University
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Definition

I If C is a chain complex and T is a binary tree, define
C(T ) recursively by

I if T consists only of a root-node, C(T ) = C

I if T is of the form

•

T1 T2

then C(T ) = HomZS2
(RS2,C(T1)⊗C(T2))

Justin Smith Drexel University
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Construction

I If
K = C ⊕∏

T
C(T )

where the product is over all binary trees

I There exists a homomorphism

ξ:K → ∏
T1,T2

HomZS2
(RS2,C(T1)⊗C(T2))

Justin Smith Drexel University
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Construction

Given the diagram

HomZS2
(RS2,K ⊗ K )
� _

γ

��

K
ξ
// ∏T1,T2

HomZS2
(RS2,C(T1)⊗C(T2))

define
I U0 = K

I Ui+1 = ξ−1
(
γ
(
HomZS2

(RS2,Ui ⊗ Ui
))
⊂ Ui

Justin Smith Drexel University
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Construction
I Define

LF (C) =
∞⋂

i=0

Ui

I The map

γ−1 ◦ ξ: LF (C)→ HomZS2
(RS2, LF (C)⊗ LF (C))

makes this a Steenrod coalgebra — the cofree
Steenrod coalgebra cogenerated by C

I this is equipped with a chain-map

εC : LF (C)→ C

called its cogeneration-map

Justin Smith Drexel University
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I Any chain map f :C → D induces a morphism of
Steenrod coalgebras

LF (f ): LF (C)→ LF (D)

I Suppose C is a Steenrod coalgebra with underlying
chain-complex C and structure-map

α:C → HomZS2
(RS2,C ⊗C)

Justin Smith Drexel University

Steenrod Coalgebras
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For each binary tree T there exists a chain-map

f (T ):C → C(T )

defined inductively by
I if T = • (the root), f (T ) = α

I If T is of the form

•

T1 T2

we define f (T ) = HomZ(1, f (T1)⊗ f (T2)) ◦ α

Justin Smith Drexel University

Steenrod Coalgebras
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The {f (T )} induce a map

β = 1⊕∏
T

f (T ):C ↪→ K

The commutativity of

HomZS2
(RS2,C ⊗C)

HomZ(1,β⊗β)
��

C

β

��

α
55

HomZS2
(RS2,K ⊗ K )
� _

ξ

��

K
γ
// ∏T1,T2

HomZS2
(RS2,C(T1)⊗C(T2))

shows that β(C) ⊂ LF (C) ⊂ K and that β is a morphism of
Steenrod coalgebras.
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Universal Property

If C is a Steenrod coalgebra and f :C → D is a chain-map,
then there exists a unique Steenrod-coalgebra morphism

f̄ = LF (f ) ◦ β:C → LF (D)

that makes the diagram

C f̄ //

f
!!

LF (D)

εD
��

D

commute.
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I Define a chain-map

N(Z̃X )→ C(X )

1 ·
(

∑
i

αiσi

)
7→∑

i
αiσi

by extending Z-linearly, where C(X ) is the
unnormalized chain-complex.

I Since X has degenerate simplices, there is no
chain-map N(Z̃X )→ N(X ) that is injective on
simplices, but there is one to C(X ).

I This induces a unique coalgebra-morphism

γ:N(Z̃X )→ LF (C(X ))
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I If X is a degeneracy free simplicial set with
unnormalized chain complex C(X ), there is an
inclusion N(X )→ C(X ).

I This induces a unique coalgebra morphism

β:N(X )→ LF (C(X ))

Incidentally, this is the reason we need X to be
degeneracy-free.
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If h is the Hurewicz map, the uniqueness of those
morphisms implies that the diagram

N(X )
β
//

N(h) %%

LF (C(X ))

N(Z̃X )

γ

OO

commutes.
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Punch line

I The map
γ:N(Z̃X )→ LF (C(X ))

is injective.

I It follows that N(h) (and Z∞X ) is determined by the
Steenrod coalgebra structure of N(X )
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If ∆n is an n-simplex, Steenrod showed that

ξ∆n (en ⊗ [∆n]) = ±[∆n]⊗ [∆n]

where en ∈ (RS2)n is the generator and [∆n] is the element
of N(∆n)n generated by ∆n.

If X is a simplicial set and we map the Steenrod coalgebra
of Z̃X to LF (C(X )), we get a diagram

N(Z̃X )→ LF (C(X ))→ ∏
k≥1

C(X )⊗k

where a simplex c ∈ Z̃Xn maps to

{c,c⊗ c,c⊗ c⊗ c, . . . }

when evaluated on {en,en ◦1 en, . . . }.
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If {c1, . . . ,ck} ∈ Z̃X are distinct elements, it is not hard to
see that their images under the map

N(Z̃X ) ↪→ N(Z̃X )⊗Q→ LF (C(X ))⊗Q→ ∏
k≥1

C(X )⊗k ⊗Q

are linearly independent.

Justin Smith Drexel University
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I What Steenrod coalgebras are topologically
realizable?

I Must have an action of the Eccles-Barratt operad, S.

I One can define a cellular Steenrod coalgebra as one
in which the image of the classifying map

α:C → LFC → LF ({Γ̃C})

lies within that of

β:N(Γ̃C) ↪→ LF ({Γ̃C})

I Such Steenrod coalgebras have a “Hurewicz map”

h:C → N(Γ̃C)

Justin Smith Drexel University
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One can use this to construct a Hurewicz realization of C
— a cosimplicial space

Γ̃C
Γ̃hi→→ Z̃Γ̃C

Z̃Γ̃hi→→ Z̃2Γ̃C →→ · · ·

Justin Smith Drexel University
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